首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection.  相似文献   

2.
Influenza A viruses are human and animal pathogens that cause morbidity and mortality, which range from mild to severe. The 2009 H1N1 pandemic was caused by the emergence of a reassortant H1N1 subtype (H1N1pdm) influenza A virus containing gene segments that originally circulated in human, avian, and swine virus reservoirs. The molecular determinants of replication and pathogenesis of H1N1pdm viruses in humans and other mammals are poorly understood. Therefore, we set out to elucidate viral determinants critical to the pathogenesis of this novel reassortant using a mouse model. We found that a glutamate-to-glycine substitution at residue 158 of the PB2 gene (PB2-E158G) increased the morbidity and mortality of the parental H1N1pdm virus. Results from mini-genome replication assays in human cells and virus titration in mouse tissues demonstrated that PB2-E158G is a pathogenic determinant, because it significantly increases viral replication rates. The virus load in PB2-E158G-infected mouse lungs was 1,300-fold higher than that of the wild-type virus. Our data also show that PB2-E158G had a much stronger influence on the RNA replication and pathogenesis of H1N1pdm viruses than PB2-E627K, which is a known pathogenic determinant. Remarkably, PB2-E158G substitutions also altered the pathotypes of two avian H5 viruses in mice, indicating that this residue impacts genetically divergent influenza A viruses and suggesting that this region of PB2 could be a new antiviral target. Collectively, the data presented in this study demonstrate that PB2-E158G is a novel pathogenic determinant of influenza A viruses in the mouse model. We speculate that PB2-E158G may be important in the adaptation of avian PB2 genes to other mammals, and BLAST sequence analysis identified a naturally occurring human H1N1pdm isolate that has this substitution. Therefore, future surveillance efforts should include scrutiny of this region of PB2 because of its potential impact on pathogenesis.  相似文献   

3.
Song H  Nieto GR  Perez DR 《Journal of virology》2007,81(17):9238-9248
In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.  相似文献   

4.
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.  相似文献   

5.
Highly pathogenic H5N1 influenza viruses continue to cause concern, even though currently circulating strains are not efficiently transmitted among humans. For efficient transmission, amino acid changes in viral proteins may be required. Here, we examined the amino acids at positions 627 and 701 of the PB2 protein. A direct analysis of the viral RNAs of H5N1 viruses in patients revealed that these amino acids contribute to efficient virus propagation in the human upper respiratory tract. Viruses grown in culture or eggs did not always reflect those in patients. These results emphasize the importance of the direct analysis of original specimens.Given the continued circulation of highly pathogenic H5N1 avian influenza viruses and their sporadic transmission to humans, the threat of a pandemic persists. However, for H5N1 influenza viruses to be efficiently transmitted among humans, amino acid substitutions in the avian viral proteins may be necessary.Two positions in the PB2 protein affect the growth of influenza viruses in mammalian cells (3, 11, 18): the amino acid at position 627 (PB2-627), which in most human influenza viruses is lysine (PB2-627Lys) and most avian viruses is glutamic acid (PB2-627Glu), and the amino acid at position 701. PB2-627Lys is associated with the efficient replication (16) and high virulence (5) of H5N1 viruses in mice. Moreover, an H7N7 avian virus isolated from a fatal human case of pneumonia possessed PB2-627Lys, whereas isolates from a nonfatal human case of conjunctivitis and from chickens during the same outbreak possessed PB2-627Glu (2).The amino acid at position 701 in PB2 is important for the high pathogenicity of H5N1 viruses in mice (11). Most avian influenza viruses possess aspartic acid at this position (PB2-701Asp); however, A/duck/Guangxi/35/2001 (H5N1), which is highly virulent in mice (11), possesses asparagine at this position (PB2-701Asn). PB2-701Asn is also found in equine (4) and swine (15) viruses, as well as some H5N1 human isolates (7, 9). Thus, both amino acids appear to be markers for the adaptation of H5N1 viruses in humans (1, 3, 17).Massin et al. (13) reported that the amino acid at PB2-627 affects viral RNA replication in cultured cells at low temperatures. Recently, we demonstrated that viruses, including those of the H5N1 subtype, with PB2-627Lys (human type) grow better at low temperatures in cultured cells than those with PB2-627Glu (avian type) (6). This association between the PB2 amino acid and temperature-dependent growth correlates with the body temperatures of hosts; the human upper respiratory tract is at a lower temperature (around 33°C) than the lower respiratory tract (around 37°C) and the avian intestine, where avian influenza viruses usually replicate (around 41°C). The ability to replicate at low temperatures may be crucial for viral spread among humans via sneezing and coughing by being able to grow in the upper respiratory organs. Therefore, the Glu-to-Lys mutation in PB2-627 is an important step for H5N1 viruses to develop pandemic potential.However, there is no direct evidence that the substitutions of PB2-627Glu with PB2-627Lys and PB2-701Asp with PB2-701Asn occur during the replication of H5N1 avian influenza viruses in human respiratory organs. Therefore, here, we directly analyzed the nucleotide sequences of viral genes from several original specimens collected from patients infected with H5N1 viruses.  相似文献   

6.
反义寡核苷酸体外抗流感病毒活性   总被引:2,自引:0,他引:2  
为了获得具有抗流感病毒活性的反义寡核苷酸,针对A型流感病毒基因组3′和5′端保守序列,设计并合成了多条硫代寡核苷酸(ODN):3′端反义ODN(IV3#)与3′端正义ODN(IV3S);5′端反义ODN(IV4#)与5′端正义ODN(IV4S)以及由5′和3′端正义/反义保守序列组成的复合序列ODN(IV6#和IV7#)。测定了PSODN的体外细胞毒性和在MDCK细胞中对流感病毒复制的影响。结果表明:(1)PSODN浓度高达50μmol/L时对MDCK细胞末表现有毒性作用;(2)与流感病毒基因组5′端互补的ODN IV4#以及由5′和3′端保守序列构成的IV6#ODN和IV7#ODN均具有较高的抗病毒活性;如IV4#ODN浓度为1μmol/L时对流感病毒A/京防/861(H1N1)抑制率近50%,浓度为10μmol/L或更高时抑制率超过70%,且IV4#抑制病毒活性呈现明显的序列和剂量依赖性;(3)IV4#ODN不仅对A型流感病毒H1N1亚型有抑制作用,对H3N2亚型也表现较高的抑制活性;(4)病毒感染复数(MOI)对IV4#ODN抗病毒活性有一定影响,当MOI较低时,IV4#ODN表现的剂量效应关系更加明显。抗流感病毒反义寡核苷核IV4#ODN的发现为进一步研究流感新型药物奠定了实验基础。〖HTH〗关键词〖HTSS〗:流感病毒, 反义寡核苷酸, 体外细胞毒性, 抗病毒活性, 感染复数  相似文献   

7.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

8.
Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.  相似文献   

9.
Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) viruses, the polymerase basic 2 protein (PB2) E627K mutation appears to be of key importance for human adaptation. During a large influenza A(H7N7) virus outbreak in the Netherlands in 2003, the A(H7N7) virus isolated from a fatal human case contained the PB2 E627K mutation as well as a hemagglutinin (HA) K416R mutation. In this study, we aimed to investigate whether these mutations occurred in the avian or the human host by Illumina Ultra-Deep sequencing of three previously uninvestigated clinical samples obtained from the fatal case. In addition, we investigated three chicken samples, two of which were obtained from the source farm. Results showed that the PB2 E627K mutation was not present in any of the chicken samples tested. Surprisingly, the avian samples were characterized by the presence of influenza virus defective RNA segments, suggestive for the synthesis of defective interfering viruses during infection in poultry. In the human samples, the PB2 E627K mutation was identified with increasing frequency during infection. Our results strongly suggest that human adaptation marker PB2 E627K has emerged during virus infection of a single human host, emphasizing the importance of reducing human exposure to avian influenza viruses to reduce the likelihood of viral adaptation to humans.  相似文献   

10.
To test the avian-origin hypothesis of the 1918 Spanish influenza virus we surveyed influenza sequences from a broad taxonomic distribution and collected 65 full-length genomes representing avian, human and "classic" swine H1N1 lineages in addition to numerous other swine (H1N2, H3N1, and H3N2), human (H2N2, H3N2, and H5N1), and avian (H1N1, H4N6, H5N1, H6N1, H6N6, H6N8, H7N3, H8N4, H9N2, and H13N2) subtypes. Amino acids from all eight segments were concatenated, aligned, and used for phylogenetic analyses. In addition, the genes of the polymerase complex (PB1, PB2, and PA) were analyzed individually. All of our results showed the Brevig-Mission/1918 strain in a position basal to the rest of the clade containing human H1N1s and were consistent with a reassortment hypothesis for the origin of the 1918 virus. Our genome phylogeny further indicates a sister relationship with the "classic" swine H1N1 lineage. The individual PB1, PB2, and PA phylogenies were consistent with reassortment/recombination hypotheses for these genes. These results demonstrate the importance of using a complete-genome approach for addressing the avian-origin hypothesis and predicting the emergence of new pandemic influenza strains.  相似文献   

11.
Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice   总被引:2,自引:0,他引:2  
Highly pathogenic avian H5N1 influenza A viruses have spread throughout Asia, Europe, and Africa, raising serious worldwide concern about their pandemic potential. Although more than 250 people have been infected with these viruses, with a consequent high rate of mortality, the molecular mechanisms responsible for the efficient transmission of H5N1 viruses among humans remain elusive. We used a mouse model to examine the role of the amino acid at position 627 of the PB2 viral protein in efficient replication of H5N1 viruses in the mammalian respiratory tract. Viruses possessing Lys at position 627 of PB2 replicated efficiently in lungs and nasal turbinates, as well as in cells, even at the lower temperature of 33 degrees C. Those viruses possessing Glu at this position replicated less well in nasal turbinates than in lungs, and less well in cells at the lower temperature. These results suggest that Lys at PB2-627 confers to avian H5N1 viruses the advantage of efficient growth in the upper and lower respiratory tracts of mammals. Therefore, efficient viral growth in the upper respiratory tract may provide a platform for the adaptation of avian H5N1 influenza viruses to humans and for efficient person-to-person virus transmission, in the context of changes in other viral properties including specificity for human (sialic acid alpha-2,6-galactose containing) receptors.  相似文献   

12.
Amongst all the internal gene segments (PB2. PB1, PA, NP, M and NS), the avian PB1 segment is the only one which was reassorted into the human H2N2 and H3N2 pandemic strains. This suggests that the reassortment of polymerase subunit genes between mammalian and avian influenza viruses might play roles for interspecies transmission. To test this hypothesis, we tested the compatibility between PB2, PB1, PA and NP derived from a H5N1 virus and a mammalian H1N1 virus. All 16 possible combinations of avian-mammalian chimeric viral ribonucleoproteins (vRNPs) were characterized. We showed that recombinant vRNPs with a mammalian PB2 and an avian PB1 had the strongest polymerase activities in human cells at all studied temperature. In addition, viruses with this specific PB2-PB1 combination could grow efficiently in cell cultures, especially at a high incubation temperature. These viruses were potent inducers of proinflammatory cytokines and chemokines in primary human macrophages and pneumocytes. Viruses with this specific PB2-PB1 combination were also found to be more capable to generate adaptive mutations under a new selection pressure. These results suggested that the viral polymerase activity might be relevant for the genesis of influenza viruses of human health concern.  相似文献   

13.
Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment.  相似文献   

14.
Nam JH  Kim EH  Song D  Choi YK  Kim JK  Poo H 《Journal of virology》2011,85(24):13271-13277
The migratory waterfowl of the world are considered to be the natural reservoir of influenza A viruses. Of the 16 hemagglutinin subtypes of avian influenza viruses, the H6 subtype is commonly perpetuated in its natural hosts and is of concern due to its potential to be a precursor of highly pathogenic influenza viruses by reassortment. During routine influenza surveillance, we isolated an unconventional H6N5 subtype of avian influenza virus. Experimental infection of mice revealed that this isolate replicated efficiently in the lungs, subsequently spread systemically, and caused lethality. The isolate also productively infected ferrets, with direct evidence of contact transmission, but no disease or transmission was seen in pigs. Although the isolate possessed the conserved receptor-binding site sequences of avian influenza viruses, it exhibited relatively low replication efficiencies in ducks and chickens. Our genetic and molecular analyses of the isolate revealed that its PB1 sequence showed the highest evolutionary relationship to those of highly pathogenic H5N1 avian influenza viruses and that its PA protein had an isoleucine residue at position 97 (a representative virulence marker). Further studies will be required to examine why our isolate has the virologic characteristics of mammalian influenza viruses but the archetypal receptor binding profiles of avian influenza viruses, as well as to determine whether its potential virulence markers (PB1 analogous to those of H5N1 viruses or isoleucine residue at position 97 within PA) could render it highly pathogenic in mice.  相似文献   

15.
The worldwide outbreak of the swine-origin 2009 H1N1 influenza A virus (IAV) and an increasing number of influenza cases caused by a highly pathogenic avian influenza (HPAI) H5N1 have accelerated the need to develop vaccines and antiviral agents against IAVs. Among various antivirals, neutralizing monoclonal antibodies (mAbs) are considered important passive therapeutics having an immediate effect against viral pathogens. Here we report a pseudovirus neutralization assay for rapid screening of neutralizing mAbs targeting hemagglutinin (HA) of H5N1 and H1N1 IAV. In this study, we generated six pseudoviruses with an HIV-1 backbone, respectively, expressing HA of four clades of H5N1 IAV and the 2009 epidemic H1N1 IAV. The resulting pseudoviruses were able to infect a variety of human and non-human cells, with 293T cells from human kidney as the most susceptible target cells. Using the established pseudovirus neutralization assay, we showed that three of ten selected mAbs specific to HA could potently neutralize infection of a pseudovirus bearing HA from the homologous IAV A/VietNam/1194/2004(H5N1) strain. This was highly consistent with the result of a microneutralization assay testing the same strain of a live IAV. Since the pseudovirus neutralization assay does not involve an infectious virus and can be performed without the requirement of a biosafety-3 laboratory, it may be applied for safe and rapid screening of neutralizing mAbs and antiviral agents targeting HA of IAVs.  相似文献   

16.
Clade 2.2 Eurasian-lineage H5N1 highly pathogenic avian influenza viruses (HPAIVs) were first detected in Qinghai Lake, China, in 2005 and subsequently spread through Asia, Europe, and Africa. Importantly, these viruses carried a lysine at amino acid position 627 of the PB2 protein (PB2 627K), a known mammalian adaptation motif. Previous avian influenza virus isolates have carried glutamic acid in this position (PB2 627E), commonly described to restrict virus polymerase function in the mammalian host. We sought to examine the effect of PB2 627K on viral maintenance in the avian reservoir. Viruses constructed by reverse genetics were engineered to contain converse PB2 627K/E mutations in a Eurasian H5N1 virus (A/turkey/Turkey/5/2005 [Ty/05]) and, for comparison, a historical pre-Asian H5N1 HPAIV that naturally bears PB2 627E (A/turkey/England/50-92/1991 [50-92]). The 50-92 PB2 627K was genetically unstable during virus propagation, resulting in reversion to PB2 627E or the accumulation of the additional mutation PB2 628R and/or a synonymous mutation from an A to a G nucleotide at nucleotide position 1869 (PB2 A1869G). Intriguingly, PB2 628R and/or A1869G appeared to improve the genetic stability of 50-92 PB2 627K. However, the replication of 50-92 PB2 627K in conjunction with these stabilizing mutations was significantly restricted in experimentally infected chickens, where reversion to PB2 627E occurred. In contrast, no significant effects on viral fitness were observed for Ty/05 PB2 627E or 627K in in vitro or in vivo experiments. Our observations suggest that PB2 627K is supported in Eurasian-lineage viruses; in contrast, PB2 627K carries a significant fitness cost in the historical pre-Asian 50-92 virus.  相似文献   

17.
PB1-F2 is a small, 87- to 90-amino-acid-long protein encoded by the +1 alternate open reading frame of the PB1 gene of most influenza A virus strains. It has been shown to contribute to viral pathogenicity in a host- and strain-dependent manner, and we have previously discovered that a serine at position 66 (66S) in the PB1-F2 protein increases virulence of the 1918 and H5N1 pandemic viruses. Recently, we have shown that PB1-F2 inhibits the induction of type I interferon (IFN) at the level of the MAVS adaptor protein. However, the molecular mechanism for the IFN antagonist function of PB1-F2 has remained unclear. In the present study, we demonstrated that the C-terminal portion of the PB1-F2 protein binds to MAVS in a region that contains the transmembrane domain. Strikingly, PB1-F2 66S was observed to bind to MAVS more efficiently than PB1-F2 66N. We also tested the effect of PB1-F2 on the IFN antagonist functions of the polymerase proteins PB1, PB2, and PA and observed enhanced IFN inhibition by the PB1 and PB2 proteins in combination with PB1-F2 but not by the PA protein. Using a flow cytometry-based assay, we demonstrate that the PB1-F2 protein inhibits MAVS-mediated IFN synthesis by decreasing the mitochondrial membrane potential (MMP). Interestingly, PB1-F2 66S affected the MMP more efficiently than wild-type PB1-F2. In summary, the results of our study identify the molecular mechanism by which the influenza virus PB1-F2 N66S protein increases virulence.  相似文献   

18.
In this report, a novel H5N2 avian influenza virus (AIV) was isolated from chickens in Tibet in 2010, western China. Phylogenetic analysis demonstrated that it was a natural reassortant between H9N2 and H5N1 subtypes. It is of note that this virus has an HP genotype with HA, PB2, M, and NS genes homologous to those of A/peregrine falcon/Hong Kong/2142/2008(H5N1)-like HPAIV isolated from dead wild birds. Publishing this genome information will contribute to the investigation of avian influenza epidemiology and to further research of AIV''s biological properties.  相似文献   

19.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

20.
The pandemic of 1918 was caused by an H1N1 influenza A virus, which is a negative strand RNA virus; however, little is known about the nature of its direct ancestral strains. Here we applied a broad genetic and phylogenetic analysis of a wide range of influenza virus genes, in particular the PB1 gene, to gain information about the phylogenetic relatedness of the 1918 H1N1 virus. We compared the RNA genome of the 1918 strain to many other influenza strains of different origin by several means, including relative synonymous codon usage (RSCU), effective number of codons (ENC), and phylogenetic relationship. We found that the PB1 gene of the 1918 pandemic virus had ENC values similar to the H1N1 classical swine and human viruses, but different ENC values from avian as well as H2N2 and H3N2 human viruses. Also, according to the RSCU of the PB1 gene, the 1918 virus grouped with all human isolates and "classical" swine H1N1 viruses. The phylogenetic studies of all eight RNA gene segments of influenza A viruses may indicate that the 1918 pandemic strain originated from a H1N1 swine virus, which itself might be derived from a H1N1 avian precursor, which was separated from the bulk of other avian viruses in toto a long time ago. The high stability of the RSCU pattern of the PB1 gene indicated that the integrity of RNA structure is more important for influenza virus evolution than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号