首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart.

Methodology/Principal Findings

We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin.

Conclusions/Significance

We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling.  相似文献   

2.
Calnexin and calreticulin are homologous lectin chaperones that assist maturation of cellular and viral glycoproteins in the mammalian endoplasmic reticulum. Calnexin and calreticulin share the same specificity for monoglucosylated protein-bound N-glycans but associate with a distinct set of newly synthesized polypeptides. We report here that most calnexin substrates do not associate with calreticulin even upon selective calnexin inactivation, while BiP associates more abundantly with nascent polypeptides under these conditions. Calreticulin associated more abundantly with orphan calnexin substrates only in infected cells and preferentially with polypeptides of viral origin, showing stronger dependence of model viral glycoproteins on endoplasmic reticulum lectins. This may explain why inactivation of the calnexin cycle affects viral replication and infectivity but not viability of mammalian cells.  相似文献   

3.

Background

Presynaptically neurotoxic phospholipases A2 inhibit synaptic vesicle recycling through endocytosis.

Principal Findings

Here we provide insight into the action of a presynaptically neurotoxic phospholipase A2 ammodytoxin A (AtxA) on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin.

Conclusions

We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein–protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A2 work can open new ways to regulate endocytosis.  相似文献   

4.
Myelin oligodendrocyte glycoprotein (MOG) is a type I integral membrane glycoprotein that localizes to myelin sheaths in the central nervous system. MOG has important implications in multiple sclerosis, as pathogenic anti-MOG antibodies have been detected in the sera of multiple sclerosis patients. As a membrane protein, MOG achieves its native structure in the endoplasmic reticulum where its folding is expected to be controlled by endoplasmic reticulum chaperones. Calnexin, calreticulin, and ERp57 are essential components of the endoplasmic reticulum quality control where they assist in the proper folding of newly synthesized glycoproteins. In this study, we show that expression of MOG is not affected by the absence of the endoplasmic reticulum quality control proteins calnexin, calreticulin, or ERp57. We also show that calnexin forms complexes with MOG and these interactions might be glycan-independent. Importantly, we show that cell surface targeting of MOG is not disrupted in the absence of the endoplasmic reticulum chaperones. This article is part of a special issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
6.

Background

Oleosin is a plant protein localized to lipid droplets and endoplasmic reticulum of plant cells. Our idea was to use it to target functional secretory proteins of interest to the cytosolic side of the endoplasmic reticulum of mammalian cells, through expressing oleosin-containing chimeras. We have designed this approach to create cellular models deficient in vitamin B12 (cobalamin) because of the known problematics associated to the obtainment of effective vitamin B12 deficient cell models. This was achieved by the overexpression of transcobalamin inside cells through anchoring to oleosin.

Methodology

chimera gene constructs including transcobalamin-oleosin (TC-O), green fluorescent protein-transcobalamin-oleosin (GFP-TC-O) and oleosin-transcobalamin (O-TC) were inserted into pAcSG2 and pCDNA3 vectors for expression in sf9 insect cells, Caco2 (colon carcinoma), NIE-115 (mouse neuroblastoma), HEK (human embryonic kidney), COS-7 (Green Monkey SV40-transfected kidney fibroblasts) and CHO (Chinese hamster ovary cells). The subcellular localization, the changes in vitamin B12 binding activity and the metabolic consequences were investigated in both Caco2 and NIE-115 cells.

Principal findings

vitamin B12 binding was dramatically higher in TC-O than that in O-TC and wild type (WT). The expression of GFP-TC-O was observed in all cell lines and found to be co-localized with an ER-targeted red fluorescent protein and calreticulin of the endoplasmic reticulum in Caco2 and COS-7 cells. The overexpression of TC-O led to B12 deficiency, evidenced by impaired conversion of cyano-cobalamin to ado-cobalamin and methyl-cobalamin, decreased methionine synthase activity and reduced S-adenosyl methionine to S-adenosyl homocysteine ratio, as well as increases in homocysteine and methylmalonic acid concentration.

Conclusions/Significance

the heterologous expression of TC-O in mammalian cells can be used as an effective strategy for investigating the cellular consequences of vitamin B12 deficiency. More generally, expression of oleosin-anchored proteins could be an interesting tool in cell engineering for studying proteins of pharmacological interest.  相似文献   

7.

Background

The cellular prion protein (PrPC) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrPSc). Although endocytosis appears to be required for this conversion, the mechanism of PrPC internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved.

Methodology/Principal Findings

We have investigated the mechanism of PrPC endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrPC internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrPC endocytosis. PrPC internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrPC co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrPC can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization.

Conclusions/Significance

These findings are of particular interest if we consider that the internalization route/s undertaken by PrPC can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.  相似文献   

8.
Calreticulin and calnexin are homologous lectins that serve as molecular chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells. Here we show that calreticulin depletion specifically accelerates the maturation of cellular and viral glycoproteins with a modest decrease in folding efficiency. Calnexin depletion prevents proper maturation of some proteins such as influenza hemagglutinin but does not interfere appreciably with the maturation of several others. A dramatic loss of stringency in the ER quality control with transport at the cell surface of misfolded glycoprotein conformers is only observed when substrate access to both calreticulin and calnexin is prevented. Although not fully interchangeable during assistance of glycoprotein folding, calreticulin and calnexin may work, independently, as efficient and crucial factors for retention in the ER of nonnative polypeptides.  相似文献   

9.

Background

The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).

Principal Findings

We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT) impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a 16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be independent of Gap1 ubiquitylation.

Conclusions

This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity, and down-regulation.  相似文献   

10.

Background

Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive.

Methodology/Principal Findings

Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations.

Conclusions/Significance

The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.  相似文献   

11.
Calnexin and calreticulin are lectin-like molecular chaperones that promote folding and assembly of newly synthesized glycoproteins in the endoplasmic reticulum. While it is well established that they interact with substrate monoglucosylated N-linked oligosaccharides, it has been proposed that they also interact with polypeptide moieties. To test this notion, glycosylated forms of bovine pancreatic ribonuclease (RNase) were translated in the presence of microsomes and their folding and association with calnexin and calreticulin were monitored. When expressed with two N-linked glycans in the presence of micromolar concentrations of deoxynojirimycin, this small soluble protein was found to bind firmly to both calnexin and calreticulin. The oligosaccharides were necessary for association, but it made no difference whether the RNase was folded or not. This indicated that unlike other chaperones, calnexin and calreticulin do not select their substrates on the basis of folding status. Moreover, enzymatic removal of the oligosaccharide chains using peptide N-glycosidase F or removal of the glucoses by ER glucosidase II resulted in dissociation of the complexes. This indicated that the lectin-like interaction, and not a protein-protein interaction, played the central role in stabilizing RNase-calnexin/calreticulin complexes.  相似文献   

12.
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.  相似文献   

13.

Background

Free light chains (LCs) are among the many ligands that bind to cubilin/megalin for endocytosis via the clathrin-dependent endosomal/lysosomal pathway. Receptor associated protein (RAP), is a 39 kDA high-affinity, chaperone-like ligand for megalin that assists in the proper folding and functioning of megalin/cubilin. Although RAP is known to inhibit ligand binding to megalin/cubilin, its effect on LC endocytosis has not been shown directly.

Methods and Principal Findings

We investigated whether RAP can block the endocytosis of LC in cultured human proximal tubule cells and whether this can prevent LC cytotoxicity. Immunofluorescence microscopy and flow cytometry showed that fluorescently labeled LC endocytosis was markedly inhibited in HK-2 cells pretreated with human RAP. The effect of RAP was dose-dependent, and was predominantly on endocytosis as it had no effect on the small acid-washable fraction of LC bound to cell membrane. RAP significantly inhibited LC induced cytokine production and phosphorylation of ERK1/2 and p38 MAPK. Prolonged exposure to LC for 48 h resulted in epithelial-to-mesenchymal transformation in HK-2 cells as evidenced by marked reduction in the expression of the epithelial cell marker E-cadherin, and increased the expression of the mesenchymal marker α-SMA, which was also prevented by RAP in the endocytosis medium.

Conclusions

RAP inhibited LC endocytosis by ∼88% and ameliorated LC-induced cytokine responses and EMT in human PTCs. The results not only provide additional evidence that LCs endocytosis occurs via the megalin/cubilin endocytic receptor system, but also show that blocking LC endocytosis by RAP can protect proximal tubule cells from LC cytotoxicity.  相似文献   

14.
Del Bem LE 《Genetica》2011,139(2):255-259
Calreticulin and calnexin are Ca2+-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca2+ homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.  相似文献   

15.

Background

A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP). However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.

Principal Findings

Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.

Significance

These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.  相似文献   

16.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

17.
18.
Calnexin and calreticulin are molecular chaperones of the endoplasmic reticulum that bind to newly synthesized glycoproteins in part through a lectin site specific for monoglucosylated (Glc(1)Man(7-9)GlcNAc(2)) oligosaccharides. In addition to this lectin-oligosaccharide interaction, in vitro studies have demonstrated that calnexin and calreticulin can bind to polypeptide segments of both glycosylated and nonglycosylated proteins. However, the in vivo relevance of this latter interaction has been questioned. We examined whether polypeptide-based interactions occur between calnexin and its substrates in vivo using the glucosidase inhibitor castanospermine or glucosidase-deficient cells to prevent the formation of monoglucosylated oligosaccharides. We show that if care is taken to preserve weak interactions, the block in lectin-oligosaccharide binding leads to the loss of some calnexin-substrate complexes, but many others remain readily detectable. Furthermore, we demonstrate that calnexin is capable of associating in vivo with a substrate that completely lacks Asn-linked oligosaccharides. The binding of calnexin to proteins that lack monoglucosylated oligosaccharides could not be attributed to nonspecific adsorption nor to its inclusion in protein aggregates. We conclude that both lectin-oligosaccharide and polypeptide-based interactions occur between calnexin and diverse proteins in vivo and that the strength of the latter interaction varies substantially between protein substrates.  相似文献   

19.
Calnexin is a type I integral membrane phosphoprotein resident of the endoplasmic reticulum. Its intraluminal domain has been deduced to function as a lectin chaperone coordinating the timing of folding of newly synthesized N-linked glycoproteins of the secretory pathway. Its C-terminal cytosolic oriented extension has an ERK1 phosphorylation site at Ser563 affecting calnexin association with the translocon. Here we find an additional function for calnexin phosphorylation at Ser563 in endoplasmic reticulum quality control. A low dose of the misfolding agent l-azetidine 2-carboxylic acid slows glycoprotein maturation and diminishes the extent and rate of secretion of newly synthesized secretory α1-antitrypsin. Under these conditions the phosphorylation of calnexin is enhanced at Ser563. Inhibition of this phosphorylation by the MEK1 inhibitor PD98059 enhanced the extent and rate of α1-antitrypsin secretion comparable with that achieved by inhibiting α-mannosidase activity with kifunensine. This is the first report in which the phosphorylation of calnexin is linked to the efficiency of secretion of a cargo glycoprotein.  相似文献   

20.
Liao F  Wang L  Yang LB  Peng X  Sun M 《PloS one》2010,5(10):e13401

Background

Tobacco GNOM LIKE 1 (NtGNL1), a new member of the Big/GBF family, is characterized by a sec 7 domain. Thus, we proposed that NtGNL1 may function in regulating pollen tube growth for vesicle trafficking.

Methodology/Principal Findings

To test this hypothesis, we used an RNAi technique to down-regulate NtGNL1 expression and found that pollen tube growth and orientation were clearly inhibited. Cytological observations revealed that both timing and behavior of endocytosis was disrupted, and endosome trafficking to prevacuolar compartments (PVC) or multivesicular bodies (MVB) was altered in pollen tube tips. Moreover, NtGNL1 seemed to partially overlap with Golgi bodies, but clearly colocalized with putative late endosome compartments. We also observed that in such pollen tubes, the Golgi apparatus disassembled and fused with the endoplasmic reticulum, indicating abnormal post-Golgi trafficking. During this process, actin organization was also remodeled.

Conclusions/Significance

Thus, we revealed that NtGNL1 is essential for pollen tube growth and orientation and it likely functions via stabilizing the structure of the Golgi apparatus and ensuring post-Golgi trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号