首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Different methods were tested for the extraction of proteins from the cell wall-enriched fraction (CWEf) obtained from a sample formed by skin and seeds of ripe berries of Vitis vinifera L. cv. Cabernet Sauvignon. The CWEf was isolated using a disruptive approach that involves tissue homogenization and precipitation by centrifugation. To extract proteins, the CWEf was treated with CaCl(2) and LiCl in two successive steps or, alternatively, with phenol. The efficiency of the protocols was evaluated by measuring protein yield and by analyzing two-dimensional gel electrophoresis (2-DE) gels for the highest detectable spot number and the greatest spot resolution. The phenol method was also adopted for the extraction of proteins from the cytosolic fraction (CYf). The comparison of 2-DE reference maps of protein extracts from CWEf and CYf indicated the presence of both common traits and unique characteristics. To survey this aspect some spots detected in both fractions or present in only one fraction were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Of the 47 spots identified, some were found to be cell wall proteins, while others were proteins not traditionally considered as localized in the apoplastic space. The data presented here provide initial information regarding the apoplastic proteome of grape berry tissues, but also raise the issue of the technical problems that characterize the isolation of cell wall proteins from these very hardy tissues.  相似文献   

3.
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion‐exchange chromatography, could be determined accurately since, xylem‐specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.  相似文献   

4.
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol + PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was ~ 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone.  相似文献   

5.
The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose‐grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate‐grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose‐grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate‐grown cells. We identified mating and pheromone‐regulated proteins that were exclusive to lactate‐grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa‐specific and other niche‐specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.  相似文献   

6.
Polysaccharides make up about 75% of plant cell walls and can be broken down to produce sugar substrates (saccharification) from which a whole range of products can be obtained, including bioethanol. Cell walls also contain 5–10% of proteins, which could be used to tailor them for agroindustrial uses. Here we present cell wall proteomics data of Brachypodium distachyon, a model plant for temperate grasses. Leaves and culms were analyzed during active growth and at mature stage. Altogether, 559 proteins were identified by LC‐MS/MS and bioinformatics, among which 314 have predicted signal peptides. Sixty‐three proteins were shared by two organs at two developmental stages where they could play housekeeping functions. Differences were observed between organs and stages of development, especially at the level of glycoside hydrolases and oxidoreductases. Differences were also found between the known cell wall proteomes of B. distachyon, Oryza sativa, and the Arabidopsis thaliana dicot. Three glycoside hydrolases could be immunolocalized in cell walls using polyclonal antibodies against proteotypic peptides. Organ‐specific expression consistent with proteomics results could be observed as well as cell‐specific localization. Moreover, the high number of proteins of unknown function in B. distachyon cell wall proteomes opens new fields of research for monocot cell walls.  相似文献   

7.
为了探讨嗜碱菌的嗜碱机制,对一株新型专性嗜碱菌(Alkalimonas amylolyticaN10)在不同pH条件下的差异膜蛋白质组进行了初步的研究。在3种pH条件下(pH值分别为8.4、9.4和10.4)培养的该菌的膜蛋白,通过8%~20%的梯度SDS-PAGE进行分离。经胶图图像和统计计算,7条电泳条带的相对染色强度随培养液的pH值变化而改变,其中仅有一条条带强度随pH值增高而增加。这些条带经胰蛋白酶胶内消化和高效液相色谱-电喷雾离子阱串联质谱(LC-MS/MS)分析,共鉴定出了12种蛋白质。其中4种膜蛋白已有报道直接或间接参与细胞pH稳态的保持,其他几种蛋白则是首次发现其表达水平与生活环境的pH变化可能相关。  相似文献   

8.
Screening of a genomic library with an antiserum raised against whole Lactobacillus fermentum BR11 cells identified a clone expressing an immunoreactive 37-kDa protein. Analysis of the 3010-bp DNA insert contained within the clone revealed four open reading frames (ORFs). One ORF encodes LysA, a 303 amino acid protein which has up to 35% identity with putative endolysins from prophages Lj928 and Lj965 from Lactobacillus johnsonii and Lp1 and Lp2 from Lactobacillus plantarum as well as with the endolysin of Lactobacillus gasseri bacteriophage Phiadh. The immunoreactive protein was shown to be encoded by a truncated ORF downstream of lysA which has similarity to glutamyl-tRNA synthetases. The N-terminus of LysA has sequence similarity with N-acetylmuramidase catalytic domains while the C-terminus has sequence similarity with putative cell envelope binding bacterial SH3b domains. C-terminal bacterial SH3b domains were identified in the majority of Lactobacillus bacteriophage endolysins. LysA was expressed in Escherichia coli and unusually was found to have a broad bacteriolytic activity range with activity against a number of different Lactobacillus species and against Lactococcus lactis, streptococci and Staphylococcus aureus. It was found that LysA is 2 and 8000 times more active against L. fermentum than L. lactis and Streptococcus pyogenes, respectively.  相似文献   

9.
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm.  相似文献   

10.
【背景】药食同源的余甘子果实在采后贮藏过程中极易软腐变质,严重影响其品质和经济价值。【目的】明确引起余甘子果实软腐病的病原菌种类及其生长特性和产细胞壁水解酶活性,为余甘子采后软腐病的控制及延长其贮藏期奠定基础。【方法】采用组织块分离法从采后发病的余甘子果实分离病原菌,按照科赫法则确定分离菌株的致病性;采用形态学特征结合rDNA-ITS序列分析对病原菌进行鉴定,测定病原菌菌丝生长和产孢特性,检测产胞外细胞壁水解酶活性。【结果】从具有软腐症状的余甘子果实中分离得到32株真菌,其中菌株DQ23是余甘子采后软腐病的致病菌,通过形态特征结合rDNA-ITS序列将其鉴定为Penicillium choerospondiatis。其菌丝在酵母膏葡萄糖琼脂培养基(YDA)上生长最快,在马铃薯蔗糖琼脂培养基(PSA)上产孢最多。该菌能有效利用多种碳、氮源,适宜产孢的碳源为蔗糖、葡萄糖,氮源为蛋白胨、牛肉膏、酵母膏。菌丝生长的最适温度和pH范围分别为25°C和3.0-5.0,产孢的最适温度和pH范围分别为25°C和4.0-7.0。光照均利于菌丝生长和产孢。该菌具有分解果胶、纤维素的能力,无分解蛋白质、鞣质的能力。【结论】Penicillium choerospondiatis是余甘子果实软腐病的病原菌,研究结果为该病害的防控奠定了基础。  相似文献   

11.
12.
13.
Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid-linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid-linked cell wall precursors across biogenic membranes.  相似文献   

14.
By disintegration of the cell wall of staphylococci a definite interlayer located between the cytoplasmic membrane and the cell wall proper could be demonstrated for the first time (=MW-interlayer). This MW-interlayer contains a sort of cloddy material in which clusters of embedded ring-like disks are hexagonally arranged in a crystal-like manner. The ring-like disks, approximately 40 Å in diameter and with center-to-center spacings of approximately 75 Å, lie in direct contact either with a rhombically arranged fibrillar network of the outer parts of the cytoplasmic membrane or they themselves are part of (or interconnected by) such an apparently rhombical network. The crystal-like arranged ring-like disks of the interlayer between the cytoplasmic membrane and the cell wall shall be called MW-particles in order to differentiate them from intramembrane particles and particles on the outer surface of the cell wall. At present, nothing more than speculation on the function of the MW-particles located within the space where final processes of the cell wall polymerization are taking place is possible.Abbreviations MW membrane-wall - EF external face - PF protoplasmic face - PS protoplasmic surface - IM intramembrane  相似文献   

15.
Variations of cell wall proteins and proteins in the medium associated with changes in cell morphology were investigated in the BY-2 line of cultured cells. BY-2 cells cultured in LS medium grew as long chains of cells, with the plane of division perpendicular to the longitudinal axis. Reduction in the levels of auxin in the medium resulted in inhibition of cell division and promotion of cell elongation. Levels of cell wall proteins in cell walls decreased and relative levels of cell wall proteins and proteins in the medium changed. Upon treatment with the anti-microtubule drug, propyzamide, cells expanded laterally. Level of cell wall proteins and relative levels of individual cell wall proteins did not change very much, but levels of proteins in the culture medium increased. In both cases, levels of acid and basic peroxidases in cell walls increased and isozyme patterns of these changed.  相似文献   

16.
17.
Cell wall proteins from purified Candida albicans and Neurospora crassa cell walls were released using trifluoromethanesulfonic acid (TFMS) which cleaves the cell wall glucan/chitin matrix and deglycosylates the proteins. The cell wall proteins were then characterized by SDS–PAGE and identified by proteomic analysis. The analyses for C. albicans identified 15 cell wall proteins and six secreted proteins. For N. crassa, the analyses identified 26 cell wall proteins and nine secreted proteins. Most of the C. albicans cell wall proteins are found in the cell walls of both yeast and hyphae cells, but some cell type-specific cell wall proteins were observed. The analyses showed that the pattern of cell wall proteins present in N. crassa vegetative hyphae and conidia (asexual spores) are quite different. Almost all of the cell wall proteins identified in N. crassa have close homologs in the sequenced fungal genomes, suggesting that these proteins have important conserved functions within the cell wall.  相似文献   

18.
19.
20.
The YBR078W/ECM33 gene of Saccharomyces cerevisiae encodes a glycosylphosphatidylinositol (GPI)-attached protein and its disruptant strain exhibited a temperature-sensitive (ts) growth defect. A HA-tagged Ybr078w protein, which complemented the ts growth phenotype of the ybr078wdelta strain, was predominantly located on the plasma membrane by GPI anchoring. To examine the requirement of the GPI anchoring on the plasma membrane for the function, the omega-minus region of Ybr078w was replaced with those of Ydr534c/Fit1 and Ynl327w/Egt2, which are known as GPI-dependent cell wall proteins. The replacement induced the change in localization of the mutant proteins from the plasma membrane to the cell wall and the mutant proteins lost the function to complement the ts cell growth defect of the ybr078wdelta strain. In addition, a similar result was obtained in a mutant protein, where the authentic SKKSK sequence at the omega-5 to omega-1 site of Ybr078w was replaced with a synthetic ISSYS sequence. It is concluded that the GPI anchoring on the plasma membrane is required for the Ybr078w function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号