首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Transforming growth factor (TGF)-β is a pro-oncogenic cytokine that induces the epithelial–mesenchymal transition (EMT), a crucial event in tumor progression. During TGF-β-mediated EMT in NMuMG mouse mammary epithelial cells, we observed sustained increases in reactive oxygen species (ROS) levels in the cytoplasm and mitochondria with a concomitant decrease in mitochondrial membrane potential and intracellular glutathione levels. In pseudo ρ0 cells, whose respiratory chain function was impaired, the increase in intracellular ROS levels was abrogated, suggesting an important role of mitochondrial activity as a trigger for TGF-β-stimulated ROS generation. In line with this, TGF-β-mediated expression of the EMT marker fibronectin was inhibited not only by chemicals that interfere with ROS signaling but also by exogenously expressed mitochondrial thioredoxin (TXN2) independent of Smad signaling. Of note, TGF-β-mediated induction of HMGA2, a central mediator of EMT and metastatic progression, was similarly impaired by TXN2 expression, revealing a novel mechanism involving a thiol oxidation reaction in mitochondria, which regulates TGF-β-mediated gene expression associated with EMT.  相似文献   

7.
8.
The epithelial to mesenchymal transition (EMT) is a crucial event for renal fibrosis that can be elicited by TGF-β1/Smads signaling and its downstream mediator connective tissue growth factor (CTGF). As a distinct member of the TGF-β superfamily, Lefty A has been shown to be significantly downregulated in the kidneys of patients with severe ureteral obstruction, suggesting its role in renal fibrosis induced by obstructive nephropathy. In order to determine whether Lefty A prevents TGF-β1-induced EMT, human proximal tubule epithelial cells (HK-2) were stably transfected with Lefty A or control vectors and stimulated with 10 ng/ml TGF-β1 for 48 h. The results show that stimulation with TGF-β1 led to EMT including cell morphology changes, Smad2/3 signaling pathway activation, increased α-SMA, collagen type I, and CTGF expression, and decreased E-cadherin expression in mock-transfected HK-2 cells. Overexpression of Lefty A efficiently blocked p-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. This finding suggests that Lefty A may serve as a potential new therapeutic target to inhibit or even reverse EMT during the process of renal fibrosis.  相似文献   

9.
Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.  相似文献   

10.
Ligand-of-Numb protein X (LNX) was initially characterized as a RING finger type E3 ubiquitin ligase that targeted the intrinsic cell fate determinant Numb for ubiquitination dependent degradation. However, the physiological function of LNX remains largely unknown. In the present study, we demonstrate that ectopic expression of LNX in human proximal tubular epithelial cells (HK-2 cells) significantly enhanced TGF-β1 induced epithelial to mesenchymal transition (EMT). The EMT-promoting effect of LNX manifested as strong inhibition of E-cadherin expression, enhanced expression of vimentin, fibronectin or PAI-1, and increased cell migration. This function of LNX was shown to be independent of its ligase activity because ectopic expression of a mutant form of LNX (C48ALNX) that lacks E3 ligase activity had the similar effect as the wild-type LNX. Overexpression of E-cadherin could inhibit LNX augmented EMT. This study suggests a potential role for LNX in promoting EMT in human proximal tubular epithelial cells.  相似文献   

11.
12.
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.  相似文献   

13.
Chen  Xi  Yan  Hong  Chen  Ying  Li  Guo  Bin  Yue  Zhou  Xiyuan 《Molecular and cellular biochemistry》2021,476(3):1631-1642
Molecular and Cellular Biochemistry - The epithelial–mesenchymal transition (EMT) plays a significant role in fibrosis and migration of lens epithelial cells (LECs), and eventually induces...  相似文献   

14.
Lefty is a novel member of the transforming growth factor (TGF) supergene family which has the potential to antagonise actions of TGF-β1 - the main factor driving fibrotic disease in the kidney and in other organs. TGF-β1 can induce fibrosis through several mechanisms, including epithelial-mesenchymal transition (EMT) which contributes to myofibroblast accumulation in the renal interstitium. This study examined whether Lefty can antagonise TGF-β1 mediated EMT. A rat tubular epithelial cell line (NRK52E) was stably transfected with a Lefty expression plasmid (52E-Lefty) or control plasmid (52E-Control). 52E-Control cells underwent TGF-β1 induced EMT with up-regulation of α-smooth muscle actin (α-SMA), down-regulation of E-cadherin, and transition to an elongated fibroblast-like morphology. In contrast, 52E-Lefty cells were substantially protected from TGF-β1 induced EMT. Analysis of signalling pathways showed that 52E-Lefty cells had a marked reduction in TGF-β1 induced Smad activity and suppression of the secondary phase of JNK (but not p38) signalling. Treatment of NRK52E cells with a JNK inhibitor was shown to suppress TGF-β1 induced EMT. In conclusion, Lefty can antagonise TGF-β1 mediated EMT in renal tubular epithelial cells. Lefty may have potential as an anti-fibrotic molecule in the treatment of renal fibrosis.  相似文献   

15.
Molecular and Cellular Biochemistry - Accumulating evidence indicates that ceramide (Cer) and palmitic acid (PA) possess the ability to modulate switching of macrophage phenotypes and possess...  相似文献   

16.

Background

Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.

Methods

A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.

Results

The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.

Conclusion

Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon.  相似文献   

17.
The epithelial–mesenchymal transition (EMT) of tubular epithelial cells to myofibroblast-like cells plays a substantial role in renal tubulointerstitial fibrosis, which is a common pathological character of end-stage renal disease (ESRD). Fibroblast growth factor-2 (FGF-2) triggers EMT in tubular epithelial cells and increases Bcl-2-associated athanogene 3 (BAG3) expression in neural progenitor and neuroblastoma cells. In addition, a novel role of regulation of EMT has been ascribed to BAG3 recently. These previous reports urged us to study the potential involvement of BAG3 in EMT triggered by FGF-2 in renal tubular epithelial cells. The current study found that FGF-2 induced EMT, simultaneously increased BAG3 expression in human kidney 2 (HK2) cells. Although FGF-2 induced EMT in nontransfected or scramble short hairpin RNA (shRNA) transfected HK2 cells, it was ineffective in BAG3-silenced cells, indicating a favorable role of BAG3 in EMT of tubular cells induced by FGF-2. Knockdown of BAG3 also significantly suppressed motion and invasion of HK2 cells mediated by FGF-2. Furthermore, we confirmed that BAG3 was upregulated in kidney of unilateral ureteral obstruction (UUO) rats, a well-established renal fibrosis model, in which EMT is supposed to exert a substantial influence on renal fibrosis. Importantly, upregulation of BAG3 was limited to tubular epithelial cells. Results of the current study identify BAG3 as a potential player in EMT of tubular epithelial cells, as well as renal fibrosis.  相似文献   

18.
A mutation within one allele of the p53 tumor suppressor gene can inactivate the remaining wild-type allele in a dominant-negative manner and in some cases can exert an additional oncogenic activity, known as mutant p53 ‘gain of function'' (GOF). To study the role of p53 mutations in prostate cancer and to discriminate between the dominant-negative effect and the GOF activity of mutant p53, we measured, using microarrays, the expression profiles of three immortalized prostate epithelial cultures expressing wild-type, inactivated p53 or mutated p53. Analysis of these gene expression profiles showed that both inactivated p53 and p53R175H mutant expression resulted in the upregulation of cell cycle progression genes. A second group, which was upregulated exclusively by mutant p53R175H, was predominantly enriched in developmental genes. This group of genes included the Twist1, a regulator of metastasis and epithelial–mesenchymal transition (EMT). Twist1 levels were also elevated in metastatic prostate cancer-derived cell line DU145, in immortalized lung fibroblasts and in a subset of lung cancer samples, all in a mutant p53-dependent manner. p53R175H mutant bearing immortalized epithelial cells showed typical features of EMT, such as higher expression of mesenchymal markers, lower expression of epithelial markers and enhanced invasive properties in vitro. The mechanism by which p53R175H mutant induces Twist1 expression involves alleviation of the epigenetic repression. Our data suggest that Twist1 expression might be upregulated following p53 mutation in cancer cells.  相似文献   

19.
Gall bladder carcinoma (GBC) is the seventh most common cancer across the globe and the most common malignancy of the biliary tract. Most GBC related deaths occur due to secondary progression and metastasis to distant organs. Epithelial–mesenchymal transition (EMT) is an important pre-requisite for tumor metastasis, however its mechanism in GBC has not yet been defined. Using the GBC-SD cell line, we have uncovered an important mediator, poly r(C) binding protein-1 (PCBP1), of transforming growth factor-beta (TGF-β)-induced EMT in GBC. Our results show that TGF-β treatment resulted in PCBP1 phosphorylation in accordance with similar observation in other model systems. We further showed through gain- and loss-of-function assays that PCBP1 expression levels regulate the capacity of GBC-SD cells to migrate and invade in vitro. Finally, our results showed that PCBP1 expression levels also regulate generation of CD44+CD24? progenitor cell population in GBC-SD cells after TGF-β treatment. Cumulatively, our results indicate, pending further validation, that PCBP1 might be a prognostic marker for GBC metastasis.  相似文献   

20.
The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号