共查询到20条相似文献,搜索用时 0 毫秒
1.
A variety of DNA viruses are known to activate gene expression directed by the long terminal repeat (LTR) of human immunodeficiency virus type 1 (HIV-1). In light of the proposed use of recombinant vaccinia virus for HIV-1 vaccines, evaluation of the role of vaccinia virus in HIV-1 activation is warranted. To investigate whether vaccinia virus induces HIV LTR-directed gene expression, transient expression assays in Jurkat cells persistently infected with vaccinia virus (Jvac) using plasmid DNA containing the LTR linked to the bacterial chloramphenicol acetyltransferase (CAT) gene were performed. CAT activity in Jvac cells was always recorded, although the level appears to fluctuate independently of virus titers. Dual intracytoplasmic staining and fluorescence-activated cell sorter analysis showed that CAT activity was expressed in the infected cells. CAT expression was not due to plasmid replication, since plasmid DNA extracted from Jvac cells 48 h after transfection was restricted only by enzymes which recognize methylated sequences, indicating a prokaryotic source for the DNA. These findings suggest that a factor(s) present in vaccinia virus-infected cells is capable of activating the LTR of HIV-1. 相似文献
2.
Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication. 总被引:10,自引:18,他引:10 下载免费PDF全文
The effects of deletions within three functional regions of the long terminal repeat of human immunodeficiency virus type 1 upon the ability of the long terminal repeat to direct production of the chloramphenicol acetyltransferase gene product and upon the ability of viruses that carry the mutations to replicate in human cell lines was investigated. The results show that the enhancer and TATAA sequences were required for efficient virus replication. Deletion of the negative regulatory element (NRE) yielded a virus that replicated more rapidly than did an otherwise isogeneic NRE-positive virus. The suppressive effect of the NRE did not depend upon the negative regulatory gene (nef), as both NRE-positive and NRE-negative viruses were defective for nef. We conclude that factors specified by the cell interact with the NRE sequences to retard human immunodeficiency virus type 1 replication. 相似文献
3.
Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1. 总被引:5,自引:3,他引:5 下载免费PDF全文
G Scala I Quinto M R Ruocco M Mallardo C Ambrosino B Squitieri P Tassone S Venuta 《Journal of virology》1993,67(5):2853-2861
Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line, which suggests that EBV and HIV-1 infection of non-B cells may result in HIV-1 promoter activation. Therefore, a specific gene product of EBV, EBNA2, can transactivate HIV-1 and possibly contribute to the clinical progression of AIDS. 相似文献
4.
5.
Transcellular activation of the human immunodeficiency virus type 1 long terminal repeat in cocultured lymphocytes. 下载免费PDF全文
One of the unexplained aspects of the progression of AIDS is that immunological abnormalities are detectable before CD4+ T-helper cell depletion occurs (A.R. Gruters, F.G. Terpstra, R. De Jong, C.J.M. Van Noesel, R.A.W. Van Lier, and F. Miedema, Eur. J. Immunol. 20:1039-1044, 1990; F. Miedema, A.J. Chantal-Petit, F.G. Terpstra, J.K.M.E. Schattenkerk, F. de Wolf, B.J.M. Al, M. Roos, J.M.A. Lang, S.A. Danner, J. Goudsmit, and P.T.A. Schellekens, J. Clin. Invest. 82:1908-1914, 1988; G.M. Shearer, D.C. Bernstein, K.S. Tung, C.S. Via, R. Redfield, S.Z. Salahuddin, and R.C. Gallo, J. Immunol. 137:2514-2521, 1986). In this report, we describe a mechanism by which human immunodeficiency virus type 1 (HIV-1)-infected cells can influence neighboring HIV-1-infected T lymphocytes and uninfected T cells as well. We have examined the interaction of T-cell and macrophage cell lines that are transfected with HIV-1 DNA by using cocultured lymphocytes. The HIV-1 constructs we used lack a functional pol gene and therefore do not produce infectious virus. Cocultivation results in the transcellular activation of the HIV long terminal repeat in the cocultured T cells. This transcellular activation is evident in as little as 3 h of cocultivation, at ratios of HIV-expressing cells to target cells as low as 1:1,000, and is dependent on the Tat-responsive element. The demonstration that a small number of HIV-expressing cells can affect a large number of uninfected bystander cells in a short period of time suggests a mechanism by which global immune dysfunction can precede the high prevalence of infected cells. 相似文献
6.
7.
Targeted derepression of the human immunodeficiency virus type 1 long terminal repeat by pyrrole-imidazole polyamides 总被引:4,自引:0,他引:4 下载免费PDF全文
Coull JJ He G Melander C Rucker VC Dervan PB Margolis DM 《Journal of virology》2002,76(23):12349-12354
The host factor LSF represses the human immunodeficiency virus type 1 long terminal repeat (LTR) by mediating recruitment of histone deacetylase. We show that pyrrole-imidazole polyamides targeted to the LTR can specifically block LSF binding both in vitro and within cells via direct access to chromatin, resulting in increased LTR expression. 相似文献
8.
9.
10.
Glucocorticoid receptor-binding site in the human immunodeficiency virus long terminal repeat. 下载免费PDF全文
D Ghosh 《Journal of virology》1992,66(1):586-590
Previous reports (P. D. Katsanakis, C. E. Sekaris, and D. A. Spandidos, Anticancer Res. 11:381-383, 1991; J. Laurence, M. B. Sellers, and S. K. Sikder, Blood 74:291-297, 1989; R. Miksicek, A. Heber, W. Schmid, U. Danesch, G. Posseckert, M. Beato, and G. Schutz, Cell 46:283-290, 1986) have suggested the existence of a glucocorticoid response element in the long terminal repeat of human immunodeficiency virus (HIV) type 1. This study demonstrated a sequence-specific interaction of the glucocorticoid receptor DNA-binding domain with the previously predicted HIV glucocorticoid response element. This interaction may be relevant to the steroid responsiveness of HIV (P. A. Furth, H. Westphal, and L. Hennighausen, AIDS Res. Hum. Retroviruses 6:553-560, 1990; J. Laurence, M. B. Sellers, and S. K. Sikder, Blood 74:291-297, 1989; J. Laurence, H. Cooke, and S. K. Sikder, Blood 75:696-703, 1990; D. A. Spandidos, V. Zoounpovilis, A. Kotsinas, C. Tsiripotis, and C. E. Sekeris, Anticancer Res. 10:1241-1246, 1990). 相似文献
11.
12.
Interactions of HTF4 with E-box motifs in the long terminal repeat of human immunodeficiency virus type 1. 下载免费PDF全文
We have identified three consensus E-box motifs in the long terminal repeat of human immunodeficiency virus type 1. One of these E boxes interacts selectively with representative members of the class A group of basic helix-loop-helix proteins, including HTF4, E47, and their heterodimers. Our analyses implicate the helix-loop-helix proteins in regulation of human immunodeficiency virus type 1 gene expression. 相似文献
13.
Probing protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1 by in vivo footprinting. 总被引:3,自引:0,他引:3 下载免费PDF全文
We have analyzed protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1 in a productively infected T-cell line by in vivo dimethyl sulfate footprinting. Major footprints are evident at the basal promoter and enhancer elements. In particular, proteins appear to occupy the TATA box, the Sp1 sites, and the two repeats of the enhancer region. In the negative regulatory element, protections are detected over the USF/MLTF and NFAT-1 sites. Furthermore, two previously unrecognized sites, from nucleotides -260 to -275 and from nucleotides -205 to -216, respectively, appear to be involved in protein-DNA interactions. These two sites are purine rich and share a common sequence motif. 相似文献
14.
15.
16.
17.
18.
19.
20.
Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. 总被引:15,自引:8,他引:15 下载免费PDF全文
The Epstein-Barr virus latent membrane protein (LMP) is an integral membrane protein that is expressed in cells latently infected with the virus. LMP is believed to play an important role in Epstein-Barr virus transformation and has been shown to induce expression of several cellular proteins. We performed a series of experiments that demonstrated that LMP is an efficient transactivator of expression from the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). Mutation or deletion of the NF-kappa B elements in the LTR abolished the transactivation, indicating that the LMP effect on HIV expression was due to induction of NF-kappa B activity. Experiments in which the HIV-1 Tat protein was coexpressed in cells together with LMP showed that Tat was able to potentiate the transactivation. Surprisingly, a synergistic effect of the two proteins was observed even in the absence of the recognized target region for Tat (TAR) in the HIV-1 LTR. 相似文献