首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A marked increase in the Na+, K+-ATPase activity of sea urchin embryos occurred following an elevation of its mRNA level, revealed by Northern blotting analysis, in developmental period between the swimming blastula and the late gastrula stage. cDNA clone of Na+, K+-ATPase α-subunit, obtained from γgt10 cDNA library of sea urchin gastrulae, was digested with EcoRl ad Hindlll. The obtained 268 bp cDNA fragment, hybridized to a 4.6 Kb RNA, was used as probe for Northern blotting analysis. The level of Na+, K+-ATPase mRNA was higher in embryo-wall cell fraction isolated from late gastrulae (ectoderm cells) than the level in the bag fraction, containing mesenchyme cells (mesoderm cells) and archenteron (endoderm cells). The activity of Na+, K+-ATPase and the level of its mRNA were higher in animalized embryos obtained by pulse treatment with A23187 for 3 hr, starting at the 8–16 cell stage and were considerably lower in vegetalized embryos induced by 3 hr treatment with Li+ than that in normal embryos at the post gastrula corresponidng stage. Augmentation of Na+, K+-ATPase gene expression can be regarded as a marker for ectoderm cell differentiation at the post gastrula stage, which results from determination of cell fate in prehatching period.  相似文献   

2.
In embryos of the sea urchin, Hemicentrotus pulcherrimus , as well as in cultured cells derived from isolated micromeres, spicule formation was inhibited by allylisothiocyanate, an inhibitor of H+, K+-ATPase, at above 0.5 μM and was almost completely blocked at above 10 μM. Amiloride, an inhibitor of Na+, H+ antiporter, at above 100 μM exerted only slight inhibitory effect, if any, on spicule formation. Intravesicular acidification, determined using [ dimethylamine -14C]-aminopyrine as a pH probe, was observed in the presence of ATP and 200 mM KCl in microsome fraction obtained from embryos at the post gastrula stage, at which embryos underwent spicule calcification. Intravesicular acidification and K+-dependent ATPase activity were almost completely inhibited by allylisothiocyanate at 10 μM. Allylisothiocyanate-sensitive ATPase activity was found mainly in the mesenchyme cells with spicules isolated from prisms. H+, K+-ATPase, an H+ pump, probably mediates H+ release to accelerate CaCO3 deposition from Ca2+, CO2 and H2O in the primary mesenchyme cells. Intravesicular acidification was stimulated by valinomycin at the late gastrula and the prism stages but not at the pluteus stage. K+ permeability probably increases after the prism stage to activate H+ release.  相似文献   

3.
In cultured cells derived from micromeres isolated at the 16-cell stage of sea urchin embryos, the activity of H+, K+-ATPase became detectable after 15 hr of culture, when the cells started to form spicules, and then increased reaching a plateau from 25 hr of culture. The Na+, K+-ATPase activity of isolated micromeres increased to a maximum at 20 hr of culture and thereafter decreased gradually. Allylisothiocyanate, an inhibitor of H+, K+-ATPase, caused a decrease in intracellular pH (pHi) accompanied by blockage of 45Ca deposition in spicule rods in spicule-forming cells at 30 hr of culture. Ouabain and amiloride had scarcely any effect on the pHi or 45, deposition. In cultured cells exposed to nifedipine, which blocked 45Ca deposition in spicule rods, allylisothiocyanate did not cause any decrease in pHi. These results show that H+, which is generated in the overall reaction to produce CaCO3 from Ca2+ and HCO3, is probably released from the cells mainly in the reaction catalyzed by H+, K+-ATPase to maintain successive production of CaCO3.  相似文献   

4.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

5.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   

6.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

7.
Changes in the activity of Na+,K+-ATPase and in the water, Na+, and K+ levels in the parietal cortex, hippocampus, and thalamus were investigated in rats 1, 3, 6, and 24 h following systemic kainic acid injection. An increase in Na+,K+-ATPase activity was observed in all three regions 3 h after the treatment, with a subsequent decrease in enzyme activity. The elevation in Na+,K+-ATPase activity was accompanied by an increase in the Na+ content and a decrease in the K+ content. These changes are presumed to occur because of repeated discharges and excessive prolonged depolarization in response to kainic acid. The decreases in Na+,K+-ATPase activity 6 and 24 h following kainic acid treatment coincide with neuropathological damage and edema formation, mainly in the hippocampus and thalamus.  相似文献   

8.
Abstract: We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the β subunits of Na+,K+-ATPase from various other species. In this study we have isolated a new Drosophila Na+,K+-ATPase α subunit cDNA clone (PSα; GenBank accession no. AF044974) and demonstrate expression of functional Na+,K+-ATPase activity when PSα mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+,K+-ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+,K+-ATPase expression in various cell and tissue types.  相似文献   

9.
We have tested if inhibition of protein kinase C is able to prevent and/or to restore the decrease of Na+,K(+)-ATPase activity in the sciatic nerve of alloxan-induced diabetic mice. Mice were made diabetic by subcutaneous injection of 200 mg of alloxan/kg of body weight. The activity of Na+,K(+)-ATPase decreased rapidly (43% after 3 days) and slightly thereafter (58% at 11 days). We show that intraperitoneal injection of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), an inhibitor of protein kinase C, prevents completely the loss of Na+,K(+)-ATPase activity produced by alloxan. Also, H7 injected into diabetic mice, 4-9 days after the injection of alloxan, restores the activity of the enzyme. The amount of activity recovered depends on the dose of H7 administered; complete recovery was reached with injection of 15 mg of H7/kg of body weight. The effect of H7 is transient, with a half-life of approximately 1 h.  相似文献   

10.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

11.
Abstract: There are two α-subunit isoforms (α1 and α2) and two β-subunit isoforms (β1 and β2) of Na+,K+-ATPase in astrocytes, but the functional heterodimer composition is not known. Ouabain (0.5–1.0 m M ) increased the levels of α1 and β1 mRNAs, whereas it decreased those of α2 and β2 mRNAs in cultured rat astrocytes. The increases in α1 and β1 mRNAs were observed at 6–48 h after addition of the inhibitor. Immunochemical analyses showed that ouabain increased α1 and β1, but not α2 and β2, proteins, and that the isoforms in control and ouabain-treated cultures were of glial origin. Low extracellular K+ and monensin (20 µ M ) mimicked the effect of ouabain on α1 mRNA. The ouabain-induced increase in α1 mRNA was blocked by the protein synthesis inhibitor cycloheximide (10 µ M ), the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetraacetoxymethyl ester (30 µ M ), and the calcineurin inhibitor FK506 (1 n M ). These findings indicate that chronic inhibition of Na+,K+-ATPase up-regulates the α1 and β1, but not α2 and β2, isoforms in astrocytes, suggesting a functional coupling of α1β1 complex. They also suggest that intracellular Na+, Ca2+, and calcineurin may be involved in ouabain-induced up-regulation of the enzyme in astrocytes.  相似文献   

12.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase.  相似文献   

13.
Using bilateral carotid artery occlusion in adult gerbils we examined the effects of ischemia and ischemia/reperfusion on cerebral phospholipid content and Na+,K+-ATPase (EC 3.6.1.3) activity. In contrast to the large changes in phospholipid content and membrane-bound enzyme activity that have been observed in liver and heart tissues, we observed relatively small changes in the cerebral content of total phospholipid, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE) following ischemic intervals of up to 240 min. Following 15 min of ischemia the cerebral content of sphingomyelin (SM) was decreased to less than 50% of control values but returned to near-normal levels with longer ischemic periods. Significant decreases in the cerebral content of phosphatidylinositol (PI) and phosphatidic acid (PA) were observed following shorter intervals of ischemia (15-45 min). Na+,K+-ATPase activity of cerebral homogenates prepared from the brains of gerbils subjected to 30-240 min of ischemia was decreased but significantly different from control activity only after 30 min of ischemia (-29%, p less than or equal to 0.05). With the exception of PS, reperfusion for 60 min following 60 min of ischemia resulted in marked increases in cerebral phospholipid content with PC, SM, PI, and PA levels exceeding and PE levels equal to preischemic values. Longer periods of reperfusion (180 min) resulted in decreases in cerebral phospholipid content toward (PC, SM, PI, and PA) or below (PE) preischemic levels. In contrast, the cerebral content of PS significantly decreased during reperfusion (-51% at 60 min, p less than or equal to 0.05) and remained below preischemic values even after 180 min of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Analysis of purified Na+,K+-ATPase from cat and human cortex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two large catalytic subunits called alpha (-) (lower molecular weight) and alpha (+) (higher molecular weight). Differences in K+ dephosphorylation of these two molecular forms have been investigated by measuring the phosphorylation level of each protein after their separation on sodium dodecyl sulfate gels. In the presence of Na+, Mg2+, and ATP, both subunits are phosphorylated. Increasing concentrations (from 0 to 3 mM) of K+ induce progressive dephosphorylation of both alpha-subunits, although the phosphoprotein content of alpha (-) is decreased significantly less than that of alpha (+). Ka values of alpha (-) for K+ are 40% and 50% greater in cat and human cortex, respectively, than values of alpha (+). alpha (-) and alpha (+) are thought to be localized in specific cell types of the brain: alpha (-) is the exclusive form of nonneuronal cells (astrocytes), whereas alpha (+) is the only form of axolemma. Our results support the hypothesis that glial and neuronal Na+,K+-ATPases are different molecular entities differing at least by their K+ sensitivity. Results are discussed in relation to the role of glial cells in the regulation of extracellular K+ in brain.  相似文献   

15.
The distributions of alpha-subunit isoforms of the Na+,K(+)-ATPase in rat pituitary were determined by immunoblotting and immunohistochemistry. Immunoreactivity for all three forms is present in the neural lobe, whereas the anterior lobe contains only alpha 1 and alpha 2. Most areas of the intermediate lobe exhibit faint immunoreactivity for only alpha 1, but thin strands of cells which stain strongly for all three isoforms are also present in this lobe. The previously reported ouabain inhibitable Na+,K(+)-ATPase activity in the neural lobe is consistent with the presence of both alpha 2 and alpha 3 subunits.  相似文献   

16.
The effect of alloxan diabetes on the activities of Na+,K+-ATPase and Mg2+-ATPase was studied in three regions of rat brain at various time intervals after the onset of diabetes. It was observed that Na+,K+-ATPase activity increased at early time intervals after diabetes, followed by a recovery to near control levels in all three regions of the brain. There was an overall increase in Mg2+-ATPase activity in all the regions. A reversal of the effect was observed with insulin administration to the diabetic rats.  相似文献   

17.
18.
The Na+,K(+)-ATPase alpha 3 isoform has recently been demonstrated immunochemically in human brain. Conclusive biochemical evidence, however, is still lacking. In this study, a unique 50-kDa polypeptide, which is known to be specific to the rat alpha 3 isoform, has been found in human brainstem Na+,K(+)-ATPase following formic acid treatment of the purified alpha isoform proteins. Human alpha 3 Na+,K(+)-ATPase is also highly sensitive to ouabain inhibition, with a 50% ouabain inhibition value of 1.0 x 10(-7) M. These results provide clear and direct evidence for the existence of the alpha 3 isoform in human brain.  相似文献   

19.
Abstract: Nitric oxide (NO)-generating compounds (NO donors) such as sodium nitroprusside, S-nitroso-N-acetylpenicillamine, S-nitroso-l -glutathione, 3-morpholinosyndnonimine (SIN-1), (dl )-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide, and 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene inhibited the Na+,K+-ATPase activity purified from porcine cerebral cortex. NO-reducing or -scavenging agents, such as superoxide dismutase or N-(dithiocarbamate)-N-methyl-d -glucamine sodium salt, l -ascorbic acid, and sulfhydryl (SH) compounds, such as dithiothreitol or the reduced form of glutathione, but not α-tocopherol, prevented the inhibition of the enzyme activity by all NO donors except sodium nitroprusside. Enzyme inhibition could also be reversed by these SH compounds, but not by superoxide dismutase, l -ascorbic acid, and α-tocopherol. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide (PTIO), which is able to scavenge NO radicals and generate nitrogen dioxide radicals (?NO2), potentiated the inhibition of this enzyme activity induced by all NO donors (except SIN-1). PTIO did not potentiate, but rather attenuated, the SIN-1-induced inhibition. SIN-1 has been reported to release both NO and superoxide and thereby to rapidly form peroxynitrite (ONOO?). These potentiated and attenuated inhibitions of the enzyme activity induced by PTIO plus all of the NO donors except sodium nitroprusside were prevented by SH compounds, but not by superoxide dismutase, l -ascorbic acid, and α-tocopherol. These results suggest that NO donors may release NO or NO-derived products, presumably ?NO2 and ONOO?, and may inhibit the Na+,K+-ATPase activity by interacting with a SH group at the active site of the enzyme.  相似文献   

20.
Embryos kept with omeprazole, a specific H+, K+-ATPase inhibitor, in a period of development between the mesenchyme blastula and the pluteus corresponding stage became abnormal plutei having quite small spicules, somewhat poor pluteus arms and apparently normal archenterons. In micro-mere-derived cells, kept with omeprazole at pH 8.2 in a period between 15 and 40 hr of culture at 20°C, omeprazole strongly inhibited spicule formation but did not block the outgrowth of pseudopodial cables, in which spicule rods were to be formed. These indicate that omeprazole probably exerts no obvious inhibitory effects other than spicule rods formation. Omeprazole-sensitive H+, K+-ATPase, an H+pump, seems to be indispensable for CaCO3 deposition (formation of spicule rod) in these spicule forming cells. H+, produced in overall reaction for CaCO3 formation: Ca2++ CO2+H2O°CaCO3+2H+, is probably released from the cells by this H+pump and hence, this reaction tends to go to CaCO3 production to form spicule rods. Omeprazole, known to become effective following its conversion to a specific inhibitor of H+, K+-ATPase at acidic pH, is able to inhibit formation of spicule rod at alkaline pH in sea water. This is probably due to an acidification of sea water near the cell surface by H+ejection in H+, K+-ATPase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号