首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramoplanin is a lipopeptide antibiotic active against multi-drug-resistant, Gram-positive pathogens. Structurally, it contains a di-mannose moiety attached to the peptide core at Hpg11. The biosynthetic gene cluster of ramoplanin has already been reported and the assembly of the depsipeptide has been elucidated but the mechanism of transferring sugar moiety to the peptide core remains unclear. Sequence analysis of the biosynthetic gene cluster indicated ramo-orf29 was a mannosyltransferase candidate. To investigate the involvement of ramo-orf29 in ramoplanin biosynthesis, gene inactivation and complementation have been conducted in Actinoplanes sp. ATCC 33076 by homologous recombination. Metabolite analysis revealed that the ramo-orf29 inactivated mutant produced no ramoplanin but the ramoplanin aglycone. Thus, ramo-orf29 codes for the mannosyltransferase in the ramoplanin biosynthesis pathway. This lays the foundation for further exploitation of the ramoplanin mannosyltransferase and aglycone in combinatorial biosynthesis.  相似文献   

2.
UROS (uroporphyrinogen III synthase; EC 4.2.1.75) is the enzyme responsible for the formation of uroporphyrinogen III, the precursor of all cellular tetrapyrroles including haem, chlorophyll and bilins. Although UROS genes have been cloned from many organisms, the level of sequence conservation between them is low, making sequence similarity searches difficult. As an alternative approach to identify the UROS gene from plants, we used functional complementation, since this does not require conservation of primary sequence. A mutant of Saccharomyces cerevisiae was constructed in which the HEM4 gene encoding UROS was deleted. This mutant was transformed with an Arabidopsis thaliana cDNA library in a yeast expression vector and two colonies were obtained that could grow in the absence of haem. The rescuing plasmids encoded an ORF (open reading frame) of 321 amino acids which, when subcloned into an Escherichia coli expression vector, was able to complement an E. coli hemD mutant defective in UROS. Final proof that the ORF encoded UROS came from the fact that the recombinant protein expressed with an N-terminal histidine-tag was found to have UROS activity. Comparison of the sequence of AtUROS (A. thaliana UROS) with the human enzyme found that the seven invariant residues previously identified were conserved, including three shown to be important for enzyme activity. Furthermore, a structure-based homology search of the protein database with AtUROS identified the human crystal structure. AtUROS has an N-terminal extension compared with orthologues from other organisms, suggesting that this might act as a targeting sequence. The precursor protein of 34 kDa translated in vitro was imported into isolated chloroplasts and processed to the mature size of 29 kDa. Confocal microscopy of plant cells transiently expressing a fusion protein of AtUROS with GFP (green fluorescent protein) confirmed that AtUROS was targeted exclusively to chloroplasts in vivo.  相似文献   

3.
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction reactions of the following alpha-hydroxy-alpha-keto acid pairs: (S)-sulfolactic acid and sulfopyruvic acid; (S)-alpha-hydroxyglutaric acid and alpha-ketoglutaric acid; (S)-lactic acid and pyruvic acid; and 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid and 1-oxo-1,3,4, 6-hexanetetracarboxylic acid. Each of these reactions is involved in the formation of coenzyme M, methanopterin, coenzyme F(420), and methanofuran, respectively. Both the MJ1425-encoded enzyme and the MJ0490-encoded enzyme were found to function to different degrees as malate dehydrogenases, reducing oxalacetate to (S)-malate using either NADH or NADPH as a reductant. Both enzymes were found to use either NADH or NADPH to reduce sulfopyruvate to (S)-sulfolactate, but the V(max)/K(m) value for the reduction of sulfopyruvate by NADH using the MJ1425-encoded enzyme was 20 times greater than any other combination of enzymes and pyridine nucleotides. Both the M. fervidus and the MJ1425-encoded enzyme catalyzed the NAD(+)-dependent oxidation of (S)-sulfolactate to sulfopyruvate. The MJ1425-encoded enzyme also catalyzed the NADH-dependent reduction of alpha-ketoglutaric acid to (S)-hydroxyglutaric acid, a component of methanopterin. Neither of the enzymes reduced pyruvate to (S)-lactate, a component of coenzyme F(420). Only the MJ1425-encoded enzyme was found to reduce 1-oxo-1,3,4,6-hexanetetracarboxylic acid, and this reduction occurred only to a small extent and produced an isomer of 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid that is not involved in the biosynthesis of methanofuran c. We conclude that the MJ1425-encoded enzyme is likely to be involved in the biosynthesis of both coenzyme M and methanopterin.  相似文献   

4.
To identify the sequence of hydroxyacid-oxoacid transhydrogenase (HOT), responsible for the oxidation of 4-hydroxybutyrate in mammalian tissues, we have purified this enzyme from rat liver and obtained partial sequences of proteins coeluting with the enzymatic activity in the last purification step. One of the identified proteins was 'iron-dependent alcohol dehydrogenase', an enzyme encoded by a gene present on human chromosome 8q 13.1 and distantly related to bacterial 4-hydroxybutyrate dehydrogenases. The identification of this protein as HOT was confirmed by showing that overexpression of the mouse homologue in HEK cells resulted in the appearance of an enzyme catalyzing the alpha-ketoglutarate-dependent oxidation of 4-hydroxybutyrate to succinate semialdehyde.  相似文献   

5.
Grochowski LL  Xu H  White RH 《Biochemistry》2008,47(9):3033-3037
Coenzyme F 420 is a hydride carrier cofactor functioning in methanogenesis. One step in the biosynthesis of coenzyme F 420 involves the coupling of 2-phospho- l-lactate (LP) to 7,8-didemethyl-8-hydroxy-5-deazaflavin, the F 420 chromophore. This condensation requires an initial activation of 2-phospho- l-lactate through a pyrophosphate linkage to GMP. Bioinformatic analysis identified an uncharacterized archaeal protein in the Methanocaldococcus jannaschii genome, MJ0887, which could be involved in this transformation. The predicted MJ0887-derived protein has domain similarity with other known nucleotidyl transferases. The MJ0887 gene was cloned and overexpressed, and the purified protein was found to catalyze the formation of lactyl-2-diphospho-5'-guanosine from LP and GTP. Kinetic constants were determined for the MJ0887-derived protein with both LP and GTP substrates and are as follows: V max = 3 micromol min (-1) mg (-1), GTP K M (app) = 56 microM, and k cat/ K M (app) = 2 x 10 (4) M (-1) s (-1) and LP K M (app) = 36 microM, and k cat/ K M (app) = 4 x 10 (4) M (-1) s (-1). The MJ0887 gene product has been designated CofC to indicate its involvement in the third step of coenzyme F 420 biosynthesis.  相似文献   

6.
7.
Enzyme 12-oxophytodienoate (OPDA) reductase (EC1.3.1.42), which is involved in the biosynthesis of jasmonic acid (JA), catalyses the reduction of 10, 11-double bonds of OPDA to yield 3-oxo-2-(2′-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0). The rice OsOPR1 gene encodes OPDA reductase (OPR) converting (−)-cis-OPDA preferentially, rather than (+)-cis-OPDA, a natural precursor of JA. Here, we provide evidence that an OPR family gene in rice chromosome 8, designated OsOPR7, encodes the enzyme involved in the JA biosynthesis. Recombinant OsOPR7-His protein efficiently catalysed the reduction of both enantiomers of cis-OPDA, similar to the OPR3 protein in Arabidopsis thaliana (L.) Heynh. The expression of OsOPR7 mRNA was induced and reached maximum levels within 0.5 h of mechanical wounding and drought stress, and the endogenous JA level started to increase in accordance with the increase in OsOPR7 expression. The GFP-OsOPR7 fusion protein was detected exclusively in peroxisomes in onion epidermal cells. Furthermore, complementation analysis using an Arabidopsis opr3 mutant indicated that the OsOPR7 gene, but not OsOPR1, was able to complement the phenotypes of male sterility in the mutant caused by JA deficiency, and that JA production in the opr3 mutant was also restored by the expression of the OsOPR7 gene. We conclude that the OsOPR7 gene encodes the enzyme catalysing the reduction of natural (+)-cis-OPDA for the JA biosynthesis in rice. Tomoyuki Tani and Hiroyuki Sobajima have equally contributed to this work.  相似文献   

8.
The initial step in the de novo biosynthesis of cytokinin in higher plants is the formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP), which is catalyzed by adenylate isopentenyltransferase (IPT). Although cytokinin is an essential hormone for growth and development, the nature of the enzyme for its biosynthesis in higher plants has not been identified. Herein, we describe the molecular cloning and biochemical identification of IPTs from Arabidopsis thaliana. Eight cDNAs encoding putative IPT, designated as AtIPT1 to AtIPT8, were picked up from A. thaliana. The Escherichia coli transformants expressing the recombinant proteins excreted cytokinin species into the culture medium except for that expressing AtIPT2 that is a putative tRNA IPT. A purified recombinant AtIPT1 catalyzed the formation of iPMP from DMAPP and AMP. These results indicate that the small multigene family contains both types of isopentenyltransferase, which could synthesize cytokinin and mature tRNA.  相似文献   

9.
We have previously reported that the majority of the archaea utilize a novel pathway for coenzyme A biosynthesis (CoA). Bacteria/eukaryotes commonly use pantothenate synthetase and pantothenate kinase to convert pantoate to 4′-phosphopantothenate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, two novel enzymes specific to the archaea, pantoate kinase and phosphopantothenate synthetase, are responsible for this conversion. Here, we examined the enzymatic properties of the archaeal phosphopantothenate synthetase, which catalyzes the ATP-dependent condensation of 4-phosphopantoate and β-alanine. The activation energy of the phosphopantothenate synthetase reaction was 82.3?kJ?mol?1. In terms of substrate specificity toward nucleoside triphosphates, the enzyme displayed a strict preference for ATP. Among several amine substrates, activity was detected with β-alanine, but not with γ-aminobutyrate, glycine nor aspartate. The phosphopantothenate synthetase reaction followed Michaelis–Menten kinetics toward β-alanine, whereas substrate inhibition was observed with 4-phosphopantoate and ATP. Feedback inhibition by CoA/acetyl-CoA and product inhibition by 4′-phosphopantothenate were not observed. By contrast, the other archaeal enzyme pantoate kinase displayed product inhibition by 4-phosphopantoate in a non-competitive manner. Based on our results, we discuss the regulation of CoA biosynthesis in the archaea.  相似文献   

10.
The first step of C-P compound biosynthesis is a C-P bond formation reaction catalyzed by phosphoenolpyruvate phosphomutase, but this reaction favors the cleavage of the C-P bond. This C-P bond forming reaction is driven by the following reaction catalyzed by phosphonopyruvate (PnPy) decarboxylase. We have cloned and sequenced the gene (bcpC) encoding PnPy decarboxylase, a key enzyme of C-P compound biosynthesis, from the bialaphos (BA) producing microorganism Streptomyces hygroscopicus by complementation methods using Streptomyces wedmorensis NP-7, which is a mutant of a fosfomycin producing strain deficient in this step. The location of this gene in the BA biosynthetic gene cluster was determined by using the expression system in Streptomyces lividans. DNA sequencing of this gene revealed a 1203-bp open reading frame encoding a polypeptide of 401 amino acids.  相似文献   

11.
Several pathovars of Pseudomonas syringae produce the phytotoxin coronatine (COR), which contains an unusual amino acid, the 1-amino-2-ethylcyclopropane carboxylic acid called coronamic acid (CMA), which is covalently linked to a polyketide-derived carboxylic acid, coronafacic acid, by an amide bond. The region of the COR biosynthetic gene cluster proposed to be responsible for CMA biosynthesis was resequenced, and errors in previously deposited cmaA sequences were corrected. These efforts allowed overproduction of P. syringae pv. glycinea PG4180 CmaA in P. syringae pv. syringae FF5 as a FLAG-tagged protein and overproduction of P. syringae pv. tomato CmaA in Escherichia coli as a His-tagged protein; both proteins were in an enzymatically active form. Sequence analysis of CmaA indicated that there were two domains, an adenylation domain (A domain) and a thiolation domain (T domain). ATP-(32)PP(i) exchange assays showed that the A domain of CmaA catalyzes the conversion of branched-chain L-amino acids and ATP into the corresponding aminoacyl-AMP derivatives, with a kinetic preference for L-allo-isoleucine. Additional experiments demonstrated that the T domain of CmaA, which is posttranslationally modified with a 4'-phosphopantetheinyl group, reacts with the AMP derivative of L-allo-isoleucine to produce an aminoacyl thiolester intermediate. This covalent species was detected by incubating CmaA with ATP and L-[G-(3)H]allo-isoleucine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. It is postulated that the L-allo-isoleucine covalently tethered to CmaA serves as the substrate for additional enzymes in the CMA biosynthetic pathway that catalyze cyclopropane ring formation, which is followed by thiolester hydrolysis, yielding free CMA. The availability of catalytically active CmaA should facilitate elucidation of the details of the subsequent steps in the formation of this novel cyclopropyl amino acid.  相似文献   

12.
Monascus pigments (MPs) have been used as food colorants for several centuries in Asian countries. However, MP biosynthesis pathway is still a controversy, and only few related genes have been reported. In this study, the function of MpigE, a gene involved in MP biosynthesis in Monascus ruber M7, was analyzed. The results revealed that the disruption, complementation, and overexpression of MpigE in M. ruber M7 had very little effects on the growth and phenotypes except MPs. The MpigE deletion strain (?MpigE) just yielded four kinds of yellow MPs and very little red pigments, while the wild-type strain M. ruber M7 produced a MP complex mixture including three (orange, red, and yellow) categories of MP compounds. Two of the four yellow MPs produced by ?MpigE were the same as those yielded by M. ruber M7. The MpigE complementation strain (?MpigE::MpigE) recovered the ability to generate orange and red MPs as M. ruber M7. The MP types produced by the MpigE overexpression strain (M7::PtrpC-MpigE) were consistent with those of M. ruber M7, while the color value was about 1.3-fold as that of M. ruber M7 (3,129 U/g red kojic). For the production of citrinin, the disruption of MpigE almost had no influence on the strain, whereas the overexpression of MpigE made citrinin decrease drastically in YES fermentation. This work will make a contribution to the study on the biosynthesis pathway of MPs in M. ruber.  相似文献   

13.
14.
Galactomannans comprise a β‐1,4‐mannan backbone substituted with α‐1,6‐galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side‐chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenumgraecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis‐related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T‐DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role.  相似文献   

15.
A full-length cDNA clone for sepiapterin reductase, an enzyme involved in tetrahydrobiopterin biosynthesis, was isolated from a human liver cDNA library by plaque hybridization. The nucleotide sequence of hSPR 8-25, which contained an entire coding region of the enzyme, was determined. The clone encoded a protein of 261 amino acids with a calculated molecular mass of 28,047 daltons. The predicted amino acid sequence of human sepiapterin reductase showed a 74% identity with the rat enzyme. We further found a striking homology between human SPR and carbonyl reductase, estradiol 17 beta-dehydrogenase, and 3 beta-hydroxy-5-ene steroid dehydrogenase, especially in their N-terminal region.  相似文献   

16.
17.
In searching for the gonococcal sialyltransferase gene(s), we cloned a 3.8-kb DNA fragment from gonococcus strain MS11 that hybridized with the oligonucleotide JU07, which was derived from the conserved C terminus of the sialyl motif present in mammalian sialyltransferases. Sequencing of the fragment revealed four putative open reading frames (ORFs), one of which (ORF-1) contained a partial sialyl motif including the amino acid sequence VGSKT, which is highly conserved among sialyltransferases. The gene was flanked by two inverted repeats containing the neisserial DNA uptake sequence and was preceded by a putative sigma 54 promoter. Database searches, however, revealed a high degree of homology between ORF-1 and the N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) of Escherichia coli and Bacillus subtilis and not with any known sialyltransferase. This homology was further established by the successful complementation of an orf-1 mutation by the E. coli glmU gene. Enzyme assays demonstrated that ORF-1 did not possess sialyltransferase activity but mimicked GlmU function catalyzing the conversion of N-acetylglucosamine 1-phosphate into UDP-N-acetylglucosamine, which is a key metabolite in the syntheses of lipopolysaccharide, peptidoglycan, and sialic acids.  相似文献   

18.
The thiamin diphosphate-dependent enzyme indolepyruvate decarboxylase catalyses the formation of indoleacetaldehyde from indolepyruvate, one step in the indolepyruvate pathway of biosynthesis of the plant hormone indole-3-acetic acid. The crystal structure of this enzyme from Enterobacter cloacae has been determined at 2.65 A resolution and refined to a crystallographic R-factor of 20.5% (Rfree 23.6%). The subunit of indolepyruvate decarboxylase contains three domains of open alpha/beta topology, which are similar in structure to that of pyruvate decarboxylase. The tetramer has pseudo 222 symmetry and can be described as a dimer of dimers. It resembles the tetramer of pyruvate decarboxylase from Zymomonas mobilis, but with a relative difference of 20 degrees in the angle between the two dimers. Active site residues are highly conserved in indolepyruvate/pyruvate decarboxylase, suggesting that the interactions with the cofactor thiamin diphosphate and the catalytic mechanisms are very similar. The substrate binding site in indolepyruvate decarboxylase contains a large hydrophobic pocket which can accommodate the bulky indole moiety of the substrate. In pyruvate decarboxylases this pocket is smaller in size and allows discrimination of larger vs. smaller substrates. In most pyruvate decarboxylases, restriction of cavity size is due to replacement of residues at three positions by large, hydrophobic amino acids such as tyrosine or tryptophan.  相似文献   

19.
Graupner M  Xu H  White RH 《Biochemistry》2002,41(11):3754-3761
The protein product of the Methanococcus jannaschii MJ1256 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to be involved in coenzyme F(420) biosynthesis. The protein catalyzes the transfer of the 2-phospholactate moiety from lactyl (2) diphospho-(5')guanosine (LPPG) to 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) with the formation of the L-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) and GMP. On the basis of the reaction catalyzed, the enzyme is named LPPG:Fo 2-phospho-L-lactate transferase. Since the reaction is the fourth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofD, the product of the cofD gene. The transferase requires Mg(2+) for activity, and the catalysis does not appear to proceed via a covalent intermediate. To a lesser extent CofD also catalyzes a number of additional reactions that include the formation of Fo-P, when the enzyme is incubated with Fo and GDP, GTP, pyrophosphate, or tripolyphosphate, and the hydrolysis of F(420)-0 to Fo. All of these side reactions can be rationalized as occurring by a common mechanism. CofD has no recognized sequence similarity to any previously characterized enzyme.  相似文献   

20.
A limited number of enzymes are known that play a role analogous to DNA proofreading by eliminating non-classical metabolites formed by side activities of enzymes of intermediary metabolism. Because few such "metabolite proofreading enzymes" are known, our purpose was to search for an enzyme able to degrade ethylmalonyl-CoA, a potentially toxic metabolite formed at a low rate from butyryl-CoA by acetyl-CoA carboxylase and propionyl-CoA carboxylase, two major enzymes of lipid metabolism. We show that mammalian tissues contain a previously unknown enzyme that decarboxylates ethylmalonyl-CoA and, at lower rates, methylmalonyl-CoA but that does not act on malonyl-CoA. Ethylmalonyl-CoA decarboxylase is particularly abundant in brown adipose tissue, liver, and kidney in mice, and is essentially cytosolic. Because Escherichia coli methylmalonyl-CoA decarboxylase belongs to the family of enoyl-CoA hydratase (ECH), we searched mammalian databases for proteins of uncharacterized function belonging to the ECH family. Combining this database search approach with sequencing data obtained on a partially purified enzyme preparation, we identified ethylmalonyl-CoA decarboxylase as ECHDC1. We confirmed this identification by showing that recombinant mouse ECHDC1 has a substantial ethylmalonyl-CoA decarboxylase activity and a lower methylmalonyl-CoA decarboxylase activity but no malonyl-CoA decarboxylase or enoyl-CoA hydratase activity. Furthermore, ECHDC1-specific siRNAs decreased the ethylmalonyl-CoA decarboxylase activity in human cells and increased the formation of ethylmalonate, most particularly in cells incubated with butyrate. These findings indicate that ethylmalonyl-CoA decarboxylase may correct a side activity of acetyl-CoA carboxylase and suggest that its mutation may be involved in the development of certain forms of ethylmalonic aciduria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号