首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The archaeon Methanocaldococcus jannaschii uses three different 2-oxoacid elongation pathways, which extend the chain length of precursors in leucine, isoleucine, and coenzyme B biosyntheses. In each of these pathways an aconitase-type hydrolyase catalyzes an hydroxyacid isomerization reaction. The genome sequence of M. jannaschii encodes two homologs of each large and small subunit that forms the hydrolyase, but the genes are not cotranscribed. The genes are more similar to each other than to previously characterized isopropylmalate isomerase or homoaconitase enzyme genes. To identify the functions of these homologs, the four combinations of subunits were heterologously expressed in Escherichia coli, purified, and reconstituted to generate the iron-sulfur center of the holoenzyme. Only the combination of MJ0499 and MJ1277 proteins catalyzed isopropylmalate and citramalate isomerization reactions. This pair also catalyzed hydration half-reactions using citraconate and maleate. Another broad-specificity enzyme, isopropylmalate dehydrogenase (MJ0720), catalyzed the oxidative decarboxylation of beta-isopropylmalate, beta-methylmalate, and d-malate. Combined with these results, phylogenetic analysis suggests that the pyruvate pathway to 2-oxobutyrate (an alternative to threonine dehydratase in isoleucine biosynthesis) evolved several times in bacteria and archaea. The enzymes in the isopropylmalate pathway of leucine biosynthesis facilitated the evolution of 2-oxobutyrate biosynthesis through the introduction of a citramalate synthase, either by gene recruitment or gene duplication and functional divergence.  相似文献   

2.
Methanofuran is the first coenzyme in the methanogenic pathway used by the archaeon Methanocaldococcus jannaschii, as well as other methanogens, to reduce CO2 to methane. The details of the pathway for the biosynthesis of methanofuran and the responsible genes have yet to be established. A clear structural element in all known methanofurans is tyramine, likely produced by the decarboxylation of L-tyrosine. We show here that the mfnA gene at M. jannaschii locus MJ0050 encodes a thermostable pyridoxal phosphate-dependent L-tyrosine decarboxylase that specifically produces tyramine. Homologs of this gene are widely distributed among euryarchaea but are not specifically related to known bacterial or plant tyrosine decarboxylases.  相似文献   

3.
Phosphopantothenoylcysteine synthase catalyzes the formation of (R)-4'-phospho-N-pantothenoylcysteine from 4'-phosphopantothenate and l-cysteine: this enzyme, involved in the biosynthesis of coenzyme A (CoA), has not previously been identified. Recently it was shown that the NH(2)-terminal domain of the Dfp protein from bacteria catalyzes the next step in CoA biosynthesis, the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to form 4'-phosphopantetheine (Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838-31846). We have partially purified phosphopantothenoylcysteine decarboxylase from Escherichia coli and demonstrated that the protein encoded by the dfp gene, here renamed coaBC, also has phosphopantothenoylcysteine synthetase activity, using CTP rather than ATP as the activating nucleoside 5'-triphosphate. This discovery completes the identification of all the enzymes involved in the biosynthesis of coenzyme A in bacteria.  相似文献   

4.
The hyperthermophilic euryarchaeon Methanococcus jannaschii uses coenzyme M (2-mercaptoethanesulfonic acid) as the terminal methyl carrier in methanogenesis. We describe an enzyme from that organism, (2R)-phospho-3-sulfolactate synthase (ComA), that catalyzes the first step in coenzyme M biosynthesis. ComA catalyzed the stereospecific Michael addition of sulfite to phosphoenolpyruvate over a broad range of temperature and pH conditions. Substrate and product analogs moderately inhibited activity. This enzyme has no significant sequence similarity to previously characterized enzymes; however, its Mg(2+)-dependent enzyme reaction mechanism may be analogous to one proposed for enolase. A diverse group of microbes and plants have homologs of ComA that could have been recruited for sulfolactate or sulfolipid biosyntheses.  相似文献   

5.
The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences.  相似文献   

6.
Two putative Methanococcus jannaschii isocitrate dehydrogenase genes, MJ1596 and MJ0720, were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze the NAD- and NADP-dependent oxidative decarboxylation of DL-threo-3-isopropylmalic acid, threo-isocitrate, erythro-isocitrate, and homologs of threo-isocitrate. Neither enzyme was found to use any of the isomers of isocitrate as a substrate. The protein product of the MJ1596 gene, designated AksF, catalyzed the NAD-dependent decarboxylation of intermediates in the biosynthesis of 7-mercaptoheptanoic acid, a moiety of methanoarchaeal coenzyme B (7-mercaptoheptanylthreonine phosphate). These intermediates included (-)-threo-isohomocitrate [(-)-threo-1-hydroxy-1,2, 4-butanetricarboxylic acid], (-)-threo-iso(homo)(2)citrate [(-)-threo-1-hydroxy-1,2,5-pentanetricarboxylic acid], and (-)-threo-iso(homo)(3)citrate [(-)-threo-1-hydroxy-1,2, 6-hexanetricarboxylic acid]. The protein product of MJ0720 was found to be alpha-isopropylmalate dehydrogenase (LeuB) and was found to catalyze the NAD-dependent decarboxylation of one isomer of DL-threo-isopropylmalate to 2-ketoisocaproate; thus, it is involved in the biosynthesis of leucine. The AksF enzyme proved to be thermostable, losing only 10% of its enzymatic activity after heating at 100 degrees C for 10 min, whereas the LeuB enzyme lost 50% of its enzymatic activity after heating at 80 degrees C for 10 min.  相似文献   

7.
Most bacteria produce the dUMP precursor for thymine nucleotide biosynthesis using two enzymes: a dCTP deaminase catalyzes the formation of dUTP and a dUTP diphosphatase catalyzes pyrophosphate release. Although these two hydrolytic enzymes appear to catalyze very different reactions, they are encoded by homologous genes. The hyperthermophilic archaeon Methanococcus jannaschii has two members of this gene family. One gene, at locus MJ1102, encodes a dUTP diphosphatase, which can scavenge deoxyuridine nucleotides that inhibit archaeal DNA polymerases. The second gene, at locus MJ0430, encodes a novel dCTP deaminase that releases dUMP, ammonia, and pyrophosphate. Therefore this enzyme can singly catalyze both steps in dUMP biosynthesis, precluding the formation of free, mutagenic dUTP. Besides differing from the previously characterized Salmonella typhimurium dCTP deaminase in its reaction products, this archaeal enzyme has a higher affinity for dCTP and its steady-state turnover is faster than the bacterial enzyme. Kinetic studies suggest: 1) the archaeal enzyme specifically recognizes dCTP; 2) dCTP deamination and dUTP diphosphatase activities occur independently at the same active site, and 3) both activities depend on Mg(2+). The bifunctional activity of this M. jannaschii enzyme illustrates the evolution of a suprafamily of related enzymes that catalyze mechanistically distinct reactions.  相似文献   

8.
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction, partially purified, and characterized. The enzyme catalyzed the incorporation of oxygen atoms of H2O into the hydroxyl group. The dehydrogenase hydroxylated quinolinic acid and pyrazine-2,3-dicarboxylic acid to form 6-hydroxyquinolinic acid and 5-hydroxypyrazine-2,3-dicarboxylic acid, respectively. Phenazine methosulfate was the preferred electron acceptor for quinolinate dehydrogenase. 6-Hydroxyquinolinate decarboxylase, catalyzing the nonoxidative decarboxylation of 6-hydroxyquinolinic acid, was purified to homogeneity and characterized. The purified enzyme had a molecular mass of approximately 221 kDa and consisted of six identical subunits. The decarboxylase specifically catalyzed the decarboxylation of 6-hydroxyquinolinic acid to 6-hydroxypicolinic acid, without any co-factors. The N-terminal amino acid sequence was homologous with those of bacterial 4,5-dihydroxyphthalate decarboxylases.  相似文献   

9.
Polyamines are present in high concentrations in archaea, yet little is known about their synthesis, except by extrapolation from bacterial and eucaryal systems. S-Adenosylmethionine (AdoMet) decarboxylase, a pyruvoyl group-containing enzyme that is required for spermidine biosynthesis, has been previously identified in eucarya and Escherichia coli. Despite spermidine concentrations in the Methanococcales that are several times higher than in E. coli, no AdoMet decarboxylase gene was recognized in the complete genome sequence of Methanococcus jannaschii. The gene encoding AdoMet decarboxylase in this archaeon is identified herein as a highly diverged homolog of the E. coli speD gene (less than 11% identity). The M. jannaschii enzyme has been expressed in E. coli and purified to homogeneity. Mass spectrometry showed that the enzyme is composed of two subunits of 61 and 63 residues that are derived from a common proenzyme; these proteins associate in an (alphabeta)(2) complex. The pyruvoyl-containing subunit is less than one-half the size of that in previously reported AdoMet decarboxylases, but the holoenzyme has enzymatic activity comparable to that of other AdoMet decarboxylases. The sequence of the M. jannaschii enzyme is a prototype of a class of AdoMet decarboxylases that includes homologs in other archaea and diverse bacteria. The broad phylogenetic distribution of this group suggests that the canonical SpeD-type decarboxylase was derived from an archaeal enzyme within the gamma proteobacterial lineage. Both SpeD-type and archaeal-type enzymes have diverged widely in sequence and size from analogous eucaryal enzymes.  相似文献   

10.
TK0149 (designated as Tk-PdaD) of a hyperthermophilic archaeon, Thermococcus kodakaraensis, was annotated as pyruvoyl-dependent arginine decarboxylase, which catalyzes agmatine formation by the decarboxylation of arginine as the first step of polyamine biosynthesis. In order to investigate its physiological roles, Tk-PdaD was purified as a recombinant form, and its substrate dependency was examined using the candidate compounds arginine, ornithine and lysine. Tk-PdaD, expressed in Escherichia coli, was cleaved into alpha and beta subunits, as other pyruvoyl-dependent enzymes, and the resulting subunits formed an (alphabeta)(6) complex. The Tk-PdaD complex catalyzed the decarboxylation of arginine but not that of ornithine and lysine. A gene disruptant lacking Tk-pdaD was constructed, showing that it grew only in the medium in the presence of agmatine but not in the absence of agmatine. The obtained results indicate that Tk-pdaD encodes a pyruvoyl-dependent arginine decarboxylase and that agmatine is essential for the cell growth of T. kodakaraensis.  相似文献   

11.
A novel decarboxylase which catalyzes an enantioselective decarboxylation of alpha-aryl-alpha-methylmalonates to alpha-arylpropionates has been purified from a soil bacterium Alcaligenes bronchisepticus KU 1201. The enzyme was purified 300-fold to homogeneity, judged from the analysis of N-terminal amino acid sequence, and found to be a monomeric enzyme of apparent 24 kDa. The enzyme catalyzes a decarboxylation giving alpha-arylalkanoates from substituted malonates such as alpha-arylmalonate and alpha-alkyl-alpha-arylmalonates. The decarboxylase is not a biotin containing enzyme because avidin have no influence on the enzyme activity. In addition, the enzyme does not require known co-factors (ATP, ADP and coenzyme A) for maximum activity. The enzyme activity was inhibited by sulfhydryl agents. The electronic effect of the substituents on kcat for the enzymic decarboxylation of arylmalonates has been studied. The logarithm of relative value of kcat gave a linear correlation to Hammett's sigma with a rho value of +1.9, for substituted phenylmalonates. Comparing the relative activities, it is clear that the enzyme prefers alpha-arylmalonates to alpha-aryl-alpha-methylmalonates. Thus, the enzyme was tentatively named as arylmalonate decarboxylase.  相似文献   

12.
Acetyl coenzyme A (CoA) synthetase (ADP forming) (ACD) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) right harpoon over left harpoon acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ACD in archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145-kDa heterotetramers (alpha(2), beta(2)). The coding genes for the alpha and beta subunits are located at different sites in the P. furiosus chromosome. Based on significant sequence similarity of the P. furiosus genes, five open reading frames (ORFs) encoding putative ACD were identified in the genome of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus and one ORF was identified in the hyperthermophilic methanogen Methanococcus jannaschii. The ORFs constitute fusions of the homologous P. furiosus genes encoding the alpha and beta subunits. Two ORFs, AF1211 and AF1938, of A. fulgidus and ORF MJ0590 of M. jannaschii were cloned and functionally overexpressed in Escherichia coli. The purified recombinant proteins were characterized as distinctive isoenzymes of ACD with different substrate specificities. In contrast to the Pyrococcus ACD, the ACDs of Archaeoglobus and Methanococcus constitute homodimers of about 140 kDa composed of two identical 70-kDa subunits, which represent fusions of the homologous P. furiosus alpha and beta subunits in an alphabeta (AF1211 and MJ0590) or betaalpha (AF1938) orientation. The data indicate that A. fulgidus and M. jannaschii contains a novel type of ADP-forming acetyl-CoA synthetase in Archaea, in which the subunit polypeptides and their coding genes are fused.  相似文献   

13.
Four pyruvate-decarboxylating enzymes with thiamine pyrophosphate (TPP) cofactors catalyze the decarboxylation of the cyclopropyl substrate analog cyclopropylglyoxylate. Pyruvate: ferredoxin oxidoreductase, an archaebacterial enzyme which catalyzes oxidation of the hydroxyethyl-TPP (HETPP) intermediate by two one-electron transfers to an iron-sulfur center, generates the coenzyme A thioester of cyclopropylcarboxylic acid. A long-lived free radical, HETPP is thought to be an intermediate in the pyruvate to acetyl-CoA conversion; however, cleavage of the cyclopropyl ring was not detected. Pyruvate decarboxylase, pyruvate oxidase, and pyruvate dehydrogenase also generate the corresponding cyclopropyl products. The applicability of cyclopropyl substrate analogs as indicators of free-radical enzyme mechanisms is discussed in light of these results.  相似文献   

14.
The Arabidopsis thaliana flavoprotein AtHAL3a is related to plant growth and salt and osmotic tolerance. AtHAL3a shows sequence homology to the bacterial flavoproteins EpiD and Dfp. EpiD, Dfp, and AtHAL3a are members of the homo-oligomeric flavin-containing Cys decarboxylase (HFCD) protein family. We demonstrate that AtHAL3a catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine. This key step in coenzyme A biosynthesis is catalyzed in bacteria by the Dfp proteins. Exchange of His-90 of AtHAL3a for Asn led to complete inactivation of the enzyme. Dfp and AtHAL3a are characterized by a shortened substrate binding clamp compared with EpiD. Exchange of the cysteine residue of the conserved ACGD motif of this binding clamp resulted in loss of (R)-4'-phospho-N-pantothenoylcysteine decarboxylase activity. Based on the crystal structures of EpiD H67N with bound substrate peptide and of AtHAL3a, we present a model for the binding of (R)-4'-phospho-N-pantothenoylcysteine to AtHAL3a.  相似文献   

15.
丙酮酸脱羧酶及其应用研究   总被引:3,自引:0,他引:3  
朱碧云  李浩明 《生命科学》2010,(11):1184-1191
丙酮酸脱羧酶(pyruvate decarboxylase,PDC),EC4.1.1.1,是一种胞内酶,是焦磷酸硫胺素(thiamine pyrophosphate,ThPP)依赖性的非氧化酶,是由辅酶ThPP、Mg2+和蛋白质构成的全酶,在辅助因子焦磷酸硫胺素和Mg2+参与下作用于丙酮酸而产生乙醛和CO2。PDC是丙酮酸合成乙醇的关键酶。它广泛存在于酵母菌、霉菌、细菌和植物等多种生物体中,不同来源的丙酮酸脱羧酶的结构、相对分子质量、酶学性质等均不尽相同。该文综述了丙酮酸脱羧酶生物学性质及其应用前景。  相似文献   

16.
Homoaconitase enzymes catalyze hydrolyase reactions in the alpha-aminoadipate pathway for lysine biosynthesis or the 2-oxosuberate pathway for methanogenic coenzyme B biosynthesis. Despite the homology of this iron-sulfur protein to aconitase, previously studied homoaconitases catalyze only the hydration of cis-homoaconitate to form homoisocitrate rather than the complete isomerization of homocitrate to homoisocitrate. The MJ1003 and MJ1271 proteins from the methanogen Methanocaldococcus jannaschii formed the first homoaconitase shown to catalyze both the dehydration of (R)-homocitrate to form cis-homoaconitate, and its hydration is shown to produce homoisocitrate. This heterotetrameric enzyme also used the analogous longer chain substrates cis-(homo)(2)aconitate, cis-(homo)(3)aconitate, and cis-(homo)(4)aconitate, all with similar specificities. A combination of the homoaconitase with the M. jannaschii homoisocitrate dehydrogenase catalyzed all of the isomerization and oxidative decarboxylation reactions required to form 2-oxoadipate, 2-oxopimelate, and 2-oxosuberate, completing three iterations of the 2-oxoacid elongation pathway. Methanogenic archaeal homoaconitases and fungal homoaconitases evolved in parallel in the aconitase superfamily. The archaeal homoaconitases share a common ancestor with isopropylmalate isomerases, and both enzymes catalyzed the hydration of the minimal substrate maleate to form d-malate. The variation in substrate specificity among these enzymes correlated with the amino acid sequences of a flexible loop in the small subunits.  相似文献   

17.
The study of DOPA (3,4-dihydroxyphenylalanine) decarboxylase by steady-state methods is difficult because multiple reactions occur. The reaction with DOPA was studied at enzyme concentrations between 20 and 50 micrometer by direct observation of the bound coenzyme by using stopped-flow and conventional spectrophotometry. Four processes were observed on different time scales and three of these were attributed to stages in the decarboxylation. The fourth was attributed to an accompanying transamination that renders the enzyme inactive. It was clear that much, if not all, of the 330 nm-absorbing coenzyme present in the free enzyme plays an active part in the decarboxylation, since it is converted into 420 nm-absorbing material in the first observable step. An intermediate absorbing maximally at 390 nm is formed in a slower step. Rate and equilibrium constants have been determined and the ratio of decarboxylation to transamination was estimated to be 1200:1.  相似文献   

18.
Graupner M  Xu H  White RH 《Biochemistry》2002,41(11):3754-3761
The protein product of the Methanococcus jannaschii MJ1256 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to be involved in coenzyme F(420) biosynthesis. The protein catalyzes the transfer of the 2-phospholactate moiety from lactyl (2) diphospho-(5')guanosine (LPPG) to 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) with the formation of the L-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) and GMP. On the basis of the reaction catalyzed, the enzyme is named LPPG:Fo 2-phospho-L-lactate transferase. Since the reaction is the fourth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofD, the product of the cofD gene. The transferase requires Mg(2+) for activity, and the catalysis does not appear to proceed via a covalent intermediate. To a lesser extent CofD also catalyzes a number of additional reactions that include the formation of Fo-P, when the enzyme is incubated with Fo and GDP, GTP, pyrophosphate, or tripolyphosphate, and the hydrolysis of F(420)-0 to Fo. All of these side reactions can be rationalized as occurring by a common mechanism. CofD has no recognized sequence similarity to any previously characterized enzyme.  相似文献   

19.
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction reactions of the following alpha-hydroxy-alpha-keto acid pairs: (S)-sulfolactic acid and sulfopyruvic acid; (S)-alpha-hydroxyglutaric acid and alpha-ketoglutaric acid; (S)-lactic acid and pyruvic acid; and 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid and 1-oxo-1,3,4, 6-hexanetetracarboxylic acid. Each of these reactions is involved in the formation of coenzyme M, methanopterin, coenzyme F(420), and methanofuran, respectively. Both the MJ1425-encoded enzyme and the MJ0490-encoded enzyme were found to function to different degrees as malate dehydrogenases, reducing oxalacetate to (S)-malate using either NADH or NADPH as a reductant. Both enzymes were found to use either NADH or NADPH to reduce sulfopyruvate to (S)-sulfolactate, but the V(max)/K(m) value for the reduction of sulfopyruvate by NADH using the MJ1425-encoded enzyme was 20 times greater than any other combination of enzymes and pyridine nucleotides. Both the M. fervidus and the MJ1425-encoded enzyme catalyzed the NAD(+)-dependent oxidation of (S)-sulfolactate to sulfopyruvate. The MJ1425-encoded enzyme also catalyzed the NADH-dependent reduction of alpha-ketoglutaric acid to (S)-hydroxyglutaric acid, a component of methanopterin. Neither of the enzymes reduced pyruvate to (S)-lactate, a component of coenzyme F(420). Only the MJ1425-encoded enzyme was found to reduce 1-oxo-1,3,4,6-hexanetetracarboxylic acid, and this reduction occurred only to a small extent and produced an isomer of 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid that is not involved in the biosynthesis of methanofuran c. We conclude that the MJ1425-encoded enzyme is likely to be involved in the biosynthesis of both coenzyme M and methanopterin.  相似文献   

20.
White RH 《Biochemistry》2004,43(23):7618-7627
No orthologs are present in the genomes of the archaea encoding genes for the first two steps in the biosynthesis of the aromatic amino acids leading to 3-dehydroquinate (DHQ). The absence of these genes prompted me to examine the nature of the reactions involved in the archaeal pathway leading to DHQ in Methanocaldococcus jannaschii. Here I report that 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde are precursors to DHQ. The sugar, which is derived from glucose 6-P, supplies a "hydroxyacetone" fragment, which, via a transaldolase reaction, undergoes an aldol condensation with the l-aspartate semialdehyde to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid. Despite the fact that both hydroxyacetone and hydroxyacetone-P were measured in the cell extracts and confirmed to arise from glucose 6-P, neither compound was found to serve as a precursor to DHQ. This amino sugar then undergoes a NAD dependent oxidative deamination to produce 3,7-dideoxy-d-threo-hept-2,6-diulosonic acid which cyclizes to 3-dehydroquinate. The protein product of the M. jannaschii MJ0400 gene catalyzes the transaldolase reaction and the protein product of the MJ1249 gene catalyzes the oxidative deamination and the cyclization reactions. The DHQ is readily converted into dehydroshikimate and shikimate in M. jannaschii cell extracts, consistent with the remaining steps and genes in the pathway being the same as in the established shikimate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号