首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic b cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.  相似文献   

2.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic β cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.Key words: Drosophila melanogaster, insulin-producing cells (IPCs), drosophila insulin-like peptides (DILPs), type 2 diabetes, oral glucose tolerance test (OGTT), insulin sensitivity, energy metabolism, life span  相似文献   

3.
Dry weight at eclosion, adult lifespan, lifetime fecundity, lipid and carbohydrate content at eclosion, and starvation and desiccation resistance at eclosion were assayed on a long-term laboratory population ofDrosophila melanogaster, and one recently wild-caught population each of four other species ofDrosophila, two from themelanogaster and two from theimmigrans species group. The relationships among trait means across the five species did not conform to expectations based on correlations among these traits inferred from selection studies onD. melanogaster. In particular, the expected positive relationships between fecundity and size/lipid content, lipid content and starvation resistance, carbohydrate (glycogen) content and desiccation resistance, and the expected negative relationship between lifespan and fecundity were not observed. Most traits were strongly positively correlated between sexes across species, except for fractional lipid content and starvation resistance per microgram lipid. For most traits, there was evidence for significant sexual dimorphism but the degree of dimorphism did not vary across species except in the case of adult lifespan, starvation resistance per microgram lipid, and desiccation resistance per microgram carbohydrate. Overall,D. nasuta nasuta andD. sulfurigaster neonasuta (immigrans group) were heavier at eclosion than themelanogaster group species, and tended to have somewhat higher absolute lipid content and starvation resistance. Yet, these twoimmigrans group species were shorter-lived and had lower average daily fecundity than themelanogaster group species. The smallest species,D. malerkotliana (melanogaster group), had relatively high daily fecundity, intermediate lifespan and high fractional lipid content, especially in females.D. ananassae (melanogaster group) had the highest absolute and fractional carbohydrate content, but its desiccation resistance per microgram carbohydrate was the lowest among the five species. In terms of overall performance, the laboratory population ofD. melanogaster was clearly superior, under laboratory conditions, to the other four species if adult lifespan, lifetime fecundity, average daily fecundity, and absolute starvation and desiccation resistance are considered. This finding is contrary to several recent reports of substantially higher adult lifespan and stress resistance in recently wild-caught flies, relative to flies maintained for a long time in discretegeneration laboratory cultures. Possible explanations for these apparent anomalies are discussed in the context of the differing selection pressures likely to be experienced byDrosophila populations in laboratory versus wild environments. This paper is dedicated to the memory of our friend and former colleague Dr Hans Raj Negi, who tragically passed away at a very young age in a road accident in November 2003.  相似文献   

4.
The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total of 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4–6 times longer than unselected controls or ancestors—up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1–5), its control populations (CB1–5), and their ancestor populations (B1–5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved.  相似文献   

5.
Many animal species face periods of chronic nutritional stress during which the individuals must continue to develop, grow, and/or reproduce despite low quantity or quality of food. Here, we use experimental evolution to study adaptation to such chronic nutritional stress in six replicate Drosophila melanogaster populations selected for the ability to survive and develop within a limited time on a very poor larval food. In unselected control populations, this poor food resulted in 20% lower egg‐to‐adult viability, 70% longer egg‐to‐adult development, and 50% lower adult body weight (compared to the standard food on which the flies were normally maintained). The evolutionary changes associated with adaptation to the poor food were assayed by comparing the selected and control lines in a common environment for different traits after 29–64 generations of selection. The selected populations evolved improved egg‐to‐adult viability and faster development on poor food. Even though the adult dry weight of selected flies when raised on the poor food was lower than that of controls, their average larval growth rate was higher. No differences in proportional pupal lipid content were observed. When raised on the standard food, the selected flies showed the same egg‐to‐adult viability and the same resistance to larval heat and cold shock as the controls and a slightly shorter developmental time. However, despite only 4% shorter development time, the adults of selected populations raised on the standard food were 13% smaller and showed 20% lower early‐life fecundity than the controls, with no differences in life span. The selected flies also turned out less tolerant to adult malnutrition. Thus, fruit flies have the genetic potential to adapt to poor larval food, with no detectable loss of larval performance on the standard food. However, adaptation to larval nutritional stress is associated with trade‐offs with adult fitness components, including adult tolerance to nutritional stress.  相似文献   

6.
One of the most common environmental stressors is a shortage or suboptimal quality of food, thus all animals deal with periods of starvation. In the present study we examine variation in starvation resistance, longevity and body lipid content and the correlations between traits along an environmental gradient using isofemale lines recently derived from natural populations of Drosophila melanogaster from South America. The use of isofemale lines and controlled rearing laboratory conditions allows us to investigate within and among population components of genetic variation and the potential associations among starvation resistance, longevity and body lipid content. All these traits were analyzed separately in females and males, improving our understanding of sexual dimorphism. Our results revealed significant differences among populations in starvation resistance and longevity. Actually, the opposing latitudinal cline detected for starvation resistance suggests that natural selection played an essential role in shaping the pattern of geographic variation in this trait. Moreover, we also detected a positive relationship between starvation resistance and body lipid content in both sexes, providing evidence for a physiological and/or evolutionary association between these traits. Conversely, starvation resistance was not correlated with longevity indicating that these traits might be enabled to evolve independently. Finally, our study reveals that there is abundant within population genetic variation for all traits that may be maintained by sex-specific effects.  相似文献   

7.
Trade-offs between reproduction and life span are ubiquitous, but little is known about their underlying mechanisms. Here we combine treatment with the juvenile hormone analog (JHa) methoprene and experimental evolution in Drosophila melanogaster to study the potential role of juvenile hormone (JH) in mediating such trade-offs at both the physiological and evolutionary level. Exposure to JHa in the larval medium (and up to 24 h posteclosion) increased early life fecundity but reduced life span of normal (unselected) flies, supporting the physiological role of JH in mediating the trade-off. This effect was much smaller for life span, and not detectable for fecundity, in fly lines previously bred for 19 generations on a medium containing JHa. Furthermore, these selection lines lived longer than unselected controls even in the absence of JHa treatment, without a detectable reduction in early life fecundity. Thus, selection for resistance to JHa apparently induced some evolutionary changes in JH metabolism or signaling, which led to longer life span as a correlated response. This supports the hypothesis that JH may mediate evolution of longer life span, but--contrary to our expectation-this apparently does not need to trade--off with fecundity.  相似文献   

8.
Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, 60Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.  相似文献   

9.
Abstract  Selection experiments with Drosophila have revealed a possible evolutionary trade-off between cold resistance and starvation resistance that may be controlled by lipid metabolism. To test this trade-off in naturally occurring Drosophila simulans populations, flies were simultaneously collected from two temperate locales experiencing contrasting seasons. Flies from a tropical locale served as a control. Cold coma recovery, starvation resistance and lipid proportion were assayed on adult males and females from each locale. Compared with the summer-collected flies from Canberra, the winter-collected flies from San Diego recovered from cold coma more quickly, were less starvation resistant and had lower lipid levels. These results support an evolutionary trade-off between cold resistance and starvation resistance. Combined, these data also suggest that differences in lipid metabolism may be an underlying mechanism for this trade-off.  相似文献   

10.
Artificial selection experiments often confer important information on the genetic correlations constraining the evolution of life history. After artificial selection has ceased however, selection pressures in the culture environment can change the correlation matrix again. Here, we reinvestigate direct and correlated responses in a set of lines of Drosophila melanogaster that were selected on virgin life span and for which selection has been relaxed for 10 years. The decrease in progeny production in long-lived lines, a strong indication of antagonistic pleiotropy, had disappeared during relaxation. This was associated with a higher cost of reproduction to long-lived flies in mated, but not in virgin life span. These data strongly suggest that genetic mechanisms of mated and virgin life span determination are partly independent. Furthermore, data on body weight, developmental time and viability indicated deleterious effects of longevity selection in either direction, giving rise to a nonlinear relationship with life span for these characters. In order to reclaim original patterns, we founded a new set of derived lines by resuming selection in mixed replicate lines of the original set. Although selection was successful, most patterns in correlated characters remained, showing that these new patterns are resistant to new episodes of selection.  相似文献   

11.
In previous experiments we found that Drosophila melanogaster lines selected for increased adult desiccation resistance had increased resistance to other environmental stresses at the adult stage including starvation, intense 60Co-γ radiation and a toxic ethanol level. In further studies on these lines, we now show that selection did not alter resistance to desiccation and ethanol at the larval stage. As well as having a lower early fecundity, selected lines showed increased adult male longevity and increased viability at high larval densities compared with control lines. There were no changes in development time or mating success. The increased male longevity is consistent with the reduced metabolic rate of the selected lines.
A genetic correlation between resistance to different stresses was confirmed by an analysis of isofemale lines derived from a population founded by flies from a stress-resistant line and an unselected line. The results are consistent with the existence of genes segregating in natural populations conferring increased general stress resistance.  相似文献   

12.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   

13.
Abstract. Life-history theory predicts evolutionary changes in reproductive traits and intrinsic mortality rates in response to differences in extrinsic mortality rates. Trade-offs between life- history traits play a pivotal role in these predictions, and such trade-offs are mediated, at least in part, by physiological allocations. To gain insight into these trade-offs, we have been performing a long-term experiment in which we allow fruitflies, Drosophila melanogaster , to evolve in response to high (HAM) and low (LAM) adult mortality rates. Here we analyze the physiological correlates of the life-history trade-offs. In addition to changing development time and early fecundity in the direction predicted, high adult mortality affected three traits expressed early in life–body size, growth rate, and ovariole number–but had little or no effect on body composition (relative fat content), viability, metabolic rate, activity, starvation resistance, or desiccation resistance. Correlations among lines revealed trade-offs between early fecundity, late fecundity, and starvation resistance, which appear to be mediated by differential allocation of lipids.  相似文献   

14.
Storage of energy metabolites has been investigated in different sets of laboratory selected desiccation or starvation resistant lines but few studies have examined such changes in wild-caught populations of Drosophila melanogaster. In contrast to parallel selection of desiccation and starvation tolerance under laboratory selection experiments, opposite clines were observed in wild populations of D. melanogaster. If resistance to desiccation and starvation occurs in opposite directions under field conditions, we may expect a trade-off for energy metabolites but such correlated changes are largely unknown. We tested whether there is a trade-off for storage as well as actual utilization of carbohydrates (trehalose and glycogen), lipids and proteins in D. melanogaster populations collected from different altitudes (512-2500 m). For desiccation resistance, darker flies (> 50% body melanization) store more body water content and endure greater loss of water (higher dehydration tolerance) as compared to lighter flies (< 30% body melanization). Based on within population analysis, we found evidence for coadapted phenotypes i.e. darker flies store and actually utilize more carbohydrates to confer greater desiccation resistance. In contrast, higher starvation resistance in lighter flies is associated with storage and actual utilization of greater lipid amount. However, darker and lighter flies did not vary in the rate of utilization of carbohydrates under desiccation stress; and of lipids under starvation stress. Thus, we did not find support for the hypothesis that a lower rate of utilization of energy metabolites may contribute to greater stress resistance. Further, for increased desiccation resistance of darker flies, about two-third of total energy budget is provided by carbohydrates. By contrast, lighter flies derive about 66% of total energy content from lipids which sustain higher starvation tolerance. Our results support evolutionary trade-off for storage as well as utilization of energy metabolites for desiccation versus starvation resistance in D. melanogaster.  相似文献   

15.
Selection for late-life fecundity and longevity in adult Drosophila melanogaster is well known to modify numerous characteristics of life history and physiology. We report experiments here in which selection applied to behavior affects features in an identical fashion. Selection for feeding rate of larval D. melanogaster modifies caloric intake, as measured by the uptake and incorporation of labeled glucose. Selection for slow larval feeding produced lines of D. melanogaster in which larvae synthesized significantly less lipid prior to pupation and eclosed to have low early-life fecundity and a long life as adults. They also had greater lifetime fecundity, but lower viability of egg to hatched adult. Alternatively, fast-feeding larvae incorporated more lipid before pupation and eclosed with high early-fecundity that declined rapidly throughout their short adult life. Slow-feeding populations also had a significantly enhanced expression of the stress-resistance genes CuZn-SOD, CATALASE, and HSP70. Selection on larval feeding behavior reproduced the antagonistic evolutionary trade-off found under selection for adult life span and mimicked the physiological response in life span as seen in many species when dietary restriction is imposed on adults. Thus, nutrient acquisition during development appears to share a common evolutionary and genetic basis with the allocation processes that determine adult life-history traits and the related phenotypic dietary restriction phenomena.  相似文献   

16.
Stress resistance traits in Drosophila often show clinal variation, suggesting that selection affects resistance traits either directly or indirectly. One of the most common causes of stress for animals is the shortage or suboptimal quality of food, and individuals within many species must survive periods of starvation or exposure to nutritionally imbalanced diets. This study determines the relationship between starvation resistance, body lipid content, and lifespan in five recently collected Drosophila simulans populations from four distinct geographic localities. Despite rearing under standard nutritional conditions, we observed significant differences in starvation resistance between sexes and between localities. If body lipid proportion is included as a covariate in statistical analysis the difference between the sexes remains (slopes are parallel, with males more susceptible than females to starvation across all lipid proportions) but the effect of locality disappears. This result suggests that flies from different localities differ in their susceptibility to starvation because of differences in their propensity to store body lipid. We observed a negative relationship between lifespan and starvation resistance in both males and females, suggesting a fitness cost to increasing lipid reserves. These data raise issues about the role of diet in maintaining life history trait variation within and among populations. In conclusion, we show many similarities and surprising differences in life history traits between D. simulans and Drosophila melanogaster.  相似文献   

17.
Starvation resistance is a trait often associated with longevity. Animals with increased longevity frequently show elevated starvation resistance and vice versa. Consequently, both life-history traits are thought to share genetic and physiological mechanisms, such as increased fat content and lowered metabolic rate. Here, we present results from 20 generations of selection on Drosophila melanogaster for increased starvation resistance at the time of adult eclosion. We observe that starvation resistance can be the result of more than one mechanism, all associated with an increase in fat resources. In general, metabolic rate is lowered under starved conditions relative to fed conditions. Metabolic rate in the starvation resistant lines is generally higher than in control lines under starved conditions. Starvation resistant flies are able to sustain a higher metabolic rate for a longer period of time when food is unavailable. This implies depletion of the increased fat reserves. However, longevity was not consistently affected by selection for increased starvation resistance. Similarly, paraquat resistance differed between selection lines and did not associate with starvation resistance, but rather with longevity. The results are discussed in relation to previous reported results on starvation resistance and its relation with mechanisms of aging and longevity.  相似文献   

18.
Maintaining an immune system is costly. Resource allocation to immunity should therefore trade off against other fitness components. Numerous studies have found phenotypic trade-offs after immune challenge, but few have investigated genetic correlations between immune components and other traits. Furthermore, empirical evidence for the costs of maintaining an innate immune system in the absence of challenges is rare. We examined responses to artificial selection on phenoloxidase (PO) activity, an important part of the insect innate defense against multicellular pathogens, in yellow dung flies, Scathophaga stercoraria (L.). After 15 generations of successful selection on PO activity, we measured reproductive characters: clutch size, egg hatching rates, adult emergence rates, and adult longevity. We found no evidence for negative genetic correlations between PO activity and reproduction. In fact, flies of lines selected for increased PO activity had larger first clutches, and flies of lines selected for decreased PO activity had smaller ones. However, flies from high-PO lines died earlier than did low-PO flies when no food was available; that is, there is a survival cost of running at high PO levels in the absence of challenge. Variation in resource acquisition or use may lead to positive genetic correlations between PO and fertility and fecundity. The negative correlation between PO and longevity under starvation may indicate that variation for resource acquisition is maintained by a cost of acquisition, based on a genotype-environment interaction.  相似文献   

19.
Insulin-like peptides (ILPs) regulate growth, reproduction, metabolic homeostasis, life span and stress resistance in worms, flies and mammals. A set of insulin producing cells (IPCs) in the Drosophila brain that express three ILPs (DILP2, 3 and 5) have been the main focus of interest in hormonal DILP signaling. Little is, however, known about factors that regulate DILP production and release by these IPCs. Here we show that the IPCs express the metabotropic GABA(B) receptor (GBR), but not the ionotropic GABA(A) receptor subunit RDL. Diminishing the GBR expression on these cells by targeted RNA interference abbreviates life span, decreases metabolic stress resistance and alters carbohydrate and lipid metabolism at stress, but not growth in Drosophila. A direct effect of diminishing GBR on IPCs is an increase in DILP immunofluorescence in these cells, an effect that is accentuated at starvation. Knockdown of irk3, possibly part of a G protein-activated inwardly rectifying K(+) channel that may link to GBRs, phenocopies GBR knockdown in starvation experiments. Our experiments suggest that the GBR is involved in inhibitory control of DILP production and release in adult flies at metabolic stress and that this receptor mediates a GABA signal from brain interneurons that may convey nutritional signals. This is the first demonstration of a neurotransmitter that inhibits insulin signaling in its regulation of metabolism, stress and life span in an invertebrate brain.  相似文献   

20.
The dipteran Drosophila melanogaster can express a form of reproductive quiescence or diapause when exposed to low temperature and shortened photoperiod. Among natural populations in the eastern United States, the frequency of lines that express reproductive diapause in the laboratory varies substantially and predictably with latitudinal origin. The goals of the present study were twofold: (1) to examine the impact of genetic variance for diapause expression on multiple traits associated with organismal fitness; and (2) to evaluate the potential for fitness trade-offs between diapause and nondiapause phenotypes that may result in the observed cline. Even prior to diapause entry or expression, inbred lines that express and do not express reproductive diapause in laboratory assays were constitutively distinct for life span, age-specific mortality rates, fecundity profiles, resistance to cold and starvation stress, lipid content, development time, and egg-to-adult viability. Furthermore, estimates of genetic correlations based on line means revealed significant differentiation for genetic variance/covariance matrices between diapause and nondiapause lines. The data indicate the potential for life-history trade-offs associated with variation for the diapause phenotype. The observed cline in diapause incidence in the eastern United States may be generated by these tradeoffs and the associated spatial and/or temporal variation in relative fitness of these two phenotypes in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号