首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Prostate carcinoma is one of the most common malignant tumors and has become a more common cancer in men. Previous studies demonstrated that evodiamine (EVO) exhibited anti-tumor activities on several cancers, but its effects on androgen-independent prostate cancer are unclear. In the present study, the action mechanisms of EVO on the growth of androgen-independent prostate cancer cells (DU145 and PC3 cells) were explored. EVO dramatically inhibited the growth and elevated cytotoxicity of DU145 and PC3 cells. The flow cytometric analysis of EVO-treated cells indicated a block of G2/M phase and an elevated level of DNA fragmentation. The G2/M arrest was accompanied by elevated Cdc2 kinase activity, an increase in expression of cyclin B1 and phosphorylated Cdc2 (Thr 161), and a decrease in expression of phosphorylated Cdc2 (Tyr 15), Myt-1, and interphase Cdc25C. TUNEL examination showed that EVO-induced apoptosis was observed at 72 h. EVO elevated the activities of caspase 3, 8, and 9 in DU145 cells, while in PC3 cells only the activities of caspase 3 and 9 were elevated. EVO also triggered the processing of caspase 3 and 9 in both DU145 and PC3 cells. We demonstrate that roscovitine treatment result in the reversion of G2/M arrest in response to EVO in both DU145 and PC3. However, inhibitory effect of roscovitine on EVO-induced apoptosis could only be observed in DU145 rather than PC3. In DU145, G2/M arrest might be a signal for initiation of EVO-triggered apoptosis. Whereas EVO-triggered PC3 apoptosis might be independent of G2/M arrest. These results suggested that EVO inhibited the growth of prostate cancer cell lines, DU145 and PC3, through an accumulation at G2/M phase and an induction of apoptosis.  相似文献   

2.
In a recent publication, we have shown that delphinidin, an anthocyanidin induces apoptosis and cell cycle arrest in highly metastatic human prostate cancer (PCa) PC3 cells. Extending these studies, we provide additional evidence that delphinidin induces apoptosis and cell cycle arrest in androgen refractory human PCa 22Rn1 cells and that these effects are concomitant with inhibition of NF-kB. We observed that delphinidin treatment to 22Rn1 cells resulted in a dose-dependent (i) G2/M phase cell cycle arrest, (ii) induction of apoptosis (iii) and inhibition of NF-kB signaling. The induction of apoptosis by delphinidin was mediated via activation of caspases since a general caspase inhibitor Z-VAD-FMK significantly reversed this effect. Delphinidin treatment to cells resulted in a dose-dependent decrease in (i) phosphorylation of IKKgamma (NEMO), (ii) phosphorylation of NF-kB inhibitory protein, (iii) phosphorylation of NF-kB/p65 at Ser536 and NF-kB/p50 at Ser529, (iv) NF-kB/p65 nuclear translocation, and (v) NF-kB DNA binding activity. Taken together, our data show that delphinidin induces apoptosis of both androgen independent and androgen refractory human PCa cells via activation of caspases and in addition, this effect might be due to inhibition of NF-kB signaling. We suggest that delphinidin could be developed as a novel agent against PCa.  相似文献   

3.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

4.
Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB?/?) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa.  相似文献   

5.
Sun H  Hou H  Lu P  Zhang L  Zhao F  Ge C  Wang T  Yao M  Li J 《PloS one》2012,7(5):e36808
The treatment of human hepatocellular carcinoma (HCC) cell lines with (+)-isocorydine, which was isolated and purified from Papaveraceae sp. plants, resulted in a growth inhibitory effect caused by the induction of G2/M phase cell cycle arrest and apoptosis. We report that isocorydine induces G2/M phase arrest by increasing cyclin B1 and p-CDK1 expression levels, which was caused by decreasing the expression and inhibiting the activation of Cdc25C. The phosphorylation levels of Chk1 and Chk2 were increased after ICD treatment. Furthermore, G2/M arrest induced by ICD can be disrupted by Chk1 siRNA but not by Chk2 siRNA. In addition, isocorydine treatment led to a decrease in the percentage of CD133(+) PLC/PRF/5 cells. Interestingly, isocorydine treatment dramatically decreased the tumorigenicity of SMMC-7721 and Huh7 cells. These findings indicate that isocorydine might be a potential therapeutic drug for the chemotherapeutic treatment of HCC.  相似文献   

6.
This study aims to investigate the expression of retinoblastoma binding protein 6 (RBBP6) in prostate cancer (PCa) and its association with the c‐Jun N‐terminal kinase (JNK) pathway. Immunohistochemistry was used to detect RBBP6 and JNK1/2 expression in PCa and benign prostatic hyperplasia tissues. RBBP6 expression in PCa cells (LNCap, PC3, and DU145) and noncancerous prostate epithelial cells (RWPE‐1) was determined by quantitative real‐time polymerase chain reaction and western blot analysis. PC3 and DU145 cells were transfected with RBBP6 small interfering RNAs (siRNAs) to examine the biological characteristics. Anisomycin (a JNK activator) with/without RBBP6 siRNA was used to treat PC3 cells for further investigating the ramification of the RBBP6‐mediated JNK pathway in PCa. PCa tissues and cells showed higher RBBP6 and JNK1/2 expression. RBBP6 was positively correlated with JNK1/2 in PCa tissues. Besides, RBBP6 expression was correlated to clinical tumor stage, lymph node metastasis, Gleason grade, preoperative prostate‐specific antigen level, as well as prognosis of PCa. RBBP6 siRNA reduced cell proliferation, arrested cells at G2/M, and promoted cell apoptosis, and suppressed JNK pathway. In addition, migration and invasion decreased after the RBBP6 siRNA transfection with downregulated matrix metallopeptidase‐2 (MMP‐2) and MMP‐9. Anisomycin promoted the proliferation, invasion, and migration of PC3 cells and inhibited PC3 cell apoptosis, which could be reversed by RBBP6 siRNA. RBBP6 expression was upregulated in PCa tissues and positively correlated with expression level of JNK1/2. With inhibition of RBBP6 expression, the proliferation, invasion, and migration of PCa cells decreased dramatically, while PC3 cell apoptosis increased appreciably, accompanied by the suppression of the JNK pathway.  相似文献   

7.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

8.
Here, we aimed to investigate the carcinogenic effects of apolipoprotein C1 (APOC1) in prostate cancer (PCa). APOC1 expression was evaluated in PCa and normal prostate specimens, and lentivirus‐mediated RNA interference was used to knockdown APOC1 in DU145 cells. The effects of APOC1 silencing on cell proliferation, cell cycle arrest, and apoptosis were assessed. APOC1 expression was much higher in PCa tissues than in normal tissues. Moreover, APOC1 silencing inhibited cell proliferation and colony formation, arrested cell cycle progression, and enhanced apoptosis in DU145 cells. Additionally, APOC1 silencing decreased survivin, phospho‐Rb, and p21 levels and increased cleaved caspase‐3 expression. These data supported the procarcinogenic effects of APOC1 in the pathogenesis of PCa and suggested that targeting APOC1 may have applications in the treatment of PCa.  相似文献   

9.
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target.  相似文献   

10.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

11.
12.
Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM–Chk2–p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.  相似文献   

13.
Earlier studies showed that 2-methoxyestradiol (2ME(2)), an endogenous nonpolar metabolite of estradiol-17β, is a strong inducer of G(2)/M cell cycle arrest (based on analysis of cellular DNA content) in human cancer cell lines. The present study sought to investigate the molecular mechanism underlying 2ME(2)-induced cell cycle arrest. We found that 2ME(2) can selectively induce mitotic prometaphase arrest, but not G(2) phase arrest, in cultured MDA-MB-435s and MCF-7 human breast cancer cells. During the induction of prometaphase arrest, there is a time-dependent initial up-regulation of cyclin B1 and Cdc2 proteins, occurring around 12-24h. The strong initial up-regulation of cyclin B1 and Cdc2 matches in timing the 2ME(2)-induced prometaphase arrest. The 2ME(2)-induced prometaphase arrest is abrogated by selective knockdown of cyclin B1 and Cdc2, or by pre-treatment of cells with roscovitine, an inhibitor of cyclin-dependent kinases, or by co-treatment of cells with cycloheximide, a protein synthesis inhibitor that was found to suppress the early up-regulation of cyclin B1 and Cdc2. In addition, we provided evidence showing that MAD2 and JNK1 are important upstream mediators of 2ME(2)-induced up-regulation of cyclin B1 and Cdc2 as well as the subsequent induction of mitotic prometaphase arrest. In conclusion, treatment of human cancer cells with 2ME(2) causes up-regulation of cyclin B1 and Cdc2, which then mediate the induction of mitotic prometaphase arrest.  相似文献   

14.
Prostate cancer is the most predominant cancer in men and related death rate increases every year. Till date, there is no effective therapy for androgen independent prostate cancer. Previous studies reported that aged garlic extract suppresses cancer growth. In the present study, diallyl disulfide [DADS], oil soluble organosulfur compound of garlic, was studied for its antiproliferative and induction of cell cycle arrest on prostate cancer cells in vitro. The suppression of cell growth was assessed by MTT assay. Induction of cell cycle arrest was assessed and confirmed by propidium iodide staining in flowcytometric analysis and western blotting analysis of major cell cycle regulator proteins. The results showed that DADS inhibited the growth of prostate cancer cells in a dose dependent manner, compared to the control. At 25 μM and 40 μM concentrations, DADS induced cell cycle arrest at G2/M transition in PC-3 cells. Western blotting analysis of cyclin A, B1 and cyclin dependent kinase 1 [CDK1] revealed that DADS inhibited the cell cycle by downregulating CDK1 expression. It is concluded that DADS, inhibits proliferation of prostate cancer cells through cell cycle arrest. Dose dependent effect of DADS on PC-3 cell line was observed in the present study.  相似文献   

15.
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.  相似文献   

16.
Yuan H  Kamata M  Xie YM  Chen IS 《Journal of virology》2004,78(15):8183-8190
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle arrest at the G(2)/M transition and subsequently apoptosis. Here we examined the potential involvement of Wee-1 in Vpr-induced G(2) arrest. Wee-1 is a cellular protein kinase that inhibits Cdc2 activity, thereby preventing cells from proceeding through mitosis. We previously showed that the levels of Wee-1 correlate with Vpr-mediated apoptosis. Here, we demonstrate that Vpr-induced G(2) arrest correlated with delayed degradation of Wee-1 at G(2)/M. Experimental depletion of Wee-1 by a small interfering RNA directed to wee-1 mRNA alleviated Vpr-induced G(2) arrest and allowed apparently normal progression through M into G(1). Similar results were observed when cells were arrested at G(2) following gamma irradiation. Thus, Wee-1 is integrally involved as a key cellular regulatory protein in the signal transduction pathway for HIV-1 Vpr-induced cell cycle arrest.  相似文献   

17.

Objective

Genistein is a soy isoflavone that has antitumor activity both in vitro and in vivo. It has been shown that genistein inhibits many type of cancers including prostate cancer (PCa) by regulating several cell signaling pathways and microRNAs (miRNAs). Recent studies suggest that the long non-coding RNAs (lncRNAs) are also involved in many cellular processes. At present there are no reports about the relationship between gensitein, miRNAs and lncRNAs. In this study, we focused on miRNAs, lncRNA that are regulated by genistein and investigated their functional role in PCa.

Method

Microarray (SurePrint G3 Human GE 8×60K) was used for expression profiling of genistein treated and control PCa cells (PC3 and DU145). Functional assay (cell proliferation, migration, invasion, apoptosis and cell cycle assays) were performed with the PCa cell lines, PC3 and DU145. Both in vitro and in vivo (nude mouse) models were used for growth assays. Luciferase reporter assays were used for binding of miR-34a to HOTAIR.

Results

LncRNA profiling showed that HOTAIR was highly regulated by genistein and its expression was higher in castration-resistant PCa cell lines than in normal prostate cells. Knockdown (siRNA) of HOTAIR decreased PCa cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. miR-34a was also up-regulated by genistein and may directly target HOTAIR in both PC3 and DU145 PCa cells.

Conclusions

Our results indicated that genistein inhibited PCa cell growth through down-regulation of oncogenic HOTAIR that is also targeted by tumor suppressor miR-34a. These findings enhance understanding of how genistein regulates lncRNA HOTAIR and miR-34a in PCa.  相似文献   

18.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

19.
Kim HR  Lee CH  Choi YH  Kang HS  Kim HD 《IUBMB life》1999,48(4):425-428
Geldanamycin (GA), a benzoquinone ansamycin, is one of the specific inhibitors of 90-kDa heat shock protein and induces growth inhibition and apoptosis in certain cancer cell lines. We have investigated the mechanism of GA-induced growth inhibition in K562 erythroleukemic cells. DNA flow-cytometric analysis indicated that GA-induced growth arrest was associated with G2/M phase arrest of the cell cycle. GA treatment down-regulated the expression of cyclin B1 and inhibited phosphorylation of Cdc2 protein, both key regulatory proteins at the G2/M boundary. GA also markedly inhibited the Cdc2 kinase activity, which may be in part a result of up-regulation of p27KIP1 by GA. The present results suggest a novel mechanism that p27KIP1 could be involved in the regulation of G2 to M phase transition.  相似文献   

20.
Signal transduction pathway and a new function of TIS21/BTG2/PC3 were investigated in p53 null U937 cells; Expression of TIS21 by 12-O-tetradecanoyl phorbol-13-acetate (TPA) stimulation was mediated by PKC-delta activation, however, was strongly inhibited by cPKC isozymes. When U937 cells were treated with TPA+Go6976, but not TPA+Go6850, the level of TIS21 mRNA was maintained over that of TPA alone. When analyzed by FACS, TPA-induced G2/M arrest was significantly inhibited by Go6850, but not by Go6976, suggesting the involvement of TIS21 and nPKC isozymes. Indeed, PKC-delta was found to be a regulator of the G2/M arrest and TIS21 expression, confirmed by employing rottlerin and dnPKC-delta experiments. In vivo accumulation of TIS21 protein significantly induced cell death through caspase 3 activation, which was supported further by degradations of procaspase 3, full-length PKC-delta, pRB, and p21(WAF1) in TIS21DeltaC expresser. When the cells were synchronized by nocodazole, TIS21 overexpressers inhibited degradations of cyclin A and cyclin B1 in 3 h after release from the synchronization. Furthermore, TIS21 inhibited cyclin B1-Cdc2 binding and its kinase activity in vivo. In summary, TPA-induced TIS21 mRNA expression is mediated by PKC-delta, and TIS21 induces G2/M arrest and cell death by inhibiting cyclin B1-Cdc2 binding and the kinase activity through its binding to Cdc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号