首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the T cell differentiation antigens CD4 (Leu-3/T4) and CD8 (Leu-2/T8) on human cytotoxic T lymphocytes (CTL) is presently seen only in conjugate formation between CTL and target cell via class II or class I MHC antigens rather than in the later killing steps. In this study, human CD4+ and CD8+ CTL clones were used to investigate the effects of monoclonal antibodies against these differentiation antigens on nonspecific triggering of cytotoxicity. Cytotoxicity was induced either by antibodies against the CD3 (T3) antigen or by the lectins Con A and PHA. Anti-CD4 or anti-CD8 antibodies specifically inhibited all types of cytotoxicity of CD4+ or CD8+ CTL, respectively, regardless of the specificity of the CTL for class I or class II HLA antigens and regardless of whether target cells expressed class I or class II antigens. These results are incompatible with an exclusive role of the CD4 and CD8 molecules in MHC class recognition and are discussed with respect to a function as negative signal receptors for these molecules on CTL.  相似文献   

2.
Human cytotoxic T lymphocytes (CTL) have been shown to recognize either class I or class II major histocompatibility (MHC) products. This recognition has been correlated with the expression of OKT antigens on the surface of the CTL. Thus, OKT4+ CTL have been shown to be reactive with class II products, whereas OKT8+ effectors recognize class I molecules. In this study, responder cells were separated according to their OKT4 or OKT8 cell surface phenotype on a fluorescence-activated cell sorter (FACS). The OKT4+ subsets were stimulated with an LCL mutant that did not express DR and MB/MT but did express SB and class I antigens. After 7 days in culture, the activated subsets were tested on a panel of class I matched or mismatched targets. The cytotoxicity observed could be correlated with the presence of matched class I antigens. In addition, monoclonal antibody (MCA) W6/32, directed at a monomorphic determinant on HLA-A and -B molecules, blocked lysis. Furthermore, six OKT4+ CTL clones were derived from the OKT4+ bulk cultures; three clones were found to be directed at class I molecules whereas the other three recognized class II determinants. The ability of these clones to lyse their relevant targets was blocked by OKT4 MCA, raising questions as to the role of the T4 molecule in antigen class-specific CTL recognition.  相似文献   

3.
We developed an in vitro system for the generation of human cytomegalovirus (CMV)-specific cytotoxic T cells (CTL) that avoids the necessity of constituting a panel of HLA-typed fibroblasts. Autologous donor leucocytes were coated with CMV antigens and were used as both stimulator and target cells. With the use of this system, CMV-specific effector cells were efficiently generated from seropositive but not seronegative donors. These CMV-specific effectors were HLA-restricted and had characteristics of T cells. Maximum lymphoproliferation preceded the appearance of maximum CTL activity by 3 to 4 days, and a close correlation was seen between both activities. Mouse anti-CMV monoclonal antibodies were used in blocking experiments in an attempt to define target antigens recognized by CMV-specific cytotoxic lymphocytes. Monoclonal antibodies directed against an early CMV membrane antigen, against neutralization epitopes, or against nuclear inclusion body protein all specifically inhibited CMV-sensitized effector cell activity but did not affect influenza virus-specific lysis. Monoclonal antibodies directed against a normal cell determinant or against poliovirus did not affect CMV-specific CTL activity. CMV-immune cytotoxic T cells could be consistently and specifically inhibited in their lytic activity by pretreating antigen-coated target cells with monoclonal antibodies directed against CMV-related proteins.  相似文献   

4.
Induction of nonspecific cytotoxicity by monoclonal anti-T3 antibodies   总被引:8,自引:0,他引:8  
The effects of monoclonal anti-T3 antibodies on the effector phase of cytotoxic T lymphocytes (CTL) were studied with respect to antigen-specific and antigen-nonspecific lysis of different target cells. Anti-T3 antibodies inhibited the antigen-specific lysis by CTL generated in mixed lymphocyte cultures (MLC), but they concomitantly augmented the nonspecific killing of third-party cells such as the cell lines Daudi, Raji, and K562. This nonspecific cytotoxicity was induced by various anti-T3 antibodies, whereas antibodies reactive with other antigens expressed on the cytotoxic effector cells lacked any such activity. Anti-T3 antibodies induced nonspecific cytotoxicity only when activated T cells, obtained by primary MLC, by repeated restimulation, or after cloning, were used. The antibodies had no effect on unstimulated peripheral T lymphocytes or thymocytes. The inhibition of the antigen-specific lysis and the induction of nonspecific lysis by anti-T3 was dose dependent, and both effects occurred at the same concentration range of anti-T3. F(ab')2 fragments of anti-T3 inhibited the specific lysis but were not able to induce cytotoxic activity, indicating that this induction is an Fc-dependent process. When different target cells were tested, only Fc receptor-positive cells were susceptible for this nonspecific cytotoxicity. Thus, anti-T3 antibodies have a dual effect on effector CTL: they inhibit antigen-specific lysis and concomitantly induce nonspecific lysis in an Fc-dependent way.  相似文献   

5.
Summary High levels of cytotoxic activity against the natural killer (NK) cell-sensitive target K562 and the NK-resistant target UCLA-SO-M14 (M14) can be generated in vitro either by mixed lymphocyte culture (MLC) or by culture of lymphocytes in interleukin 2 (IL2) (lymphokine activated killer (LAK) cells). The purpose of this study was to identify similarities and differences between MLC-LAK and IL2-LAK cells and allospecific cytotoxic T cells. Induction of cytotoxicity against K562 and M14 in both culture systems was inhibited by antibodies specific either for IL2 or the Tac IL2 receptor. Like NK effector cells, the precursors for the MLC-LAK cells were low density large lymphocytes. However these precursors differed from the large granular lymphocytes that mediated NK cytolysis in sensitivity to the toxic lysosomotropic agent L-leucine methyl ester (LME). The resistance of the MLC-LAK precursors to LME indicated that the precursors included large agranular lymphocytes. Although interferon-gamma (IFN-gamma) is produced in MLC and in IL2 containing cultures, it is not required for induction of either type of cytotoxic activity. Neutralization of IFN-gamma in MLC-and IL2-containing cultures with specific antibodies had no effect on the induction of cytotoxic activities. Both allospecific cytotoxic T lymphocyte (CTL) and LAK activities were enhanced by IL2 and IFN-gamma at the effector cell stage. However, the mechanism of cytolysis was different in the two systems. NK- and MLC-induced LAK activities were independent of CD3-T cell receptor complex while CTL activity was blocked by monoclonal antibodies specific for the CD3 antigen. These results suggest that NK and the in vitro induced LAK cytotoxicities are a family of related functions that differ from CTL. Furthermore, MLC-induced and IL2-induced cytotoxicities against K562 and M14 appear to be identical.This work was supported by NIH grant CA34442  相似文献   

6.
It is reported here that most cytotoxic T lymphocytes (CTL), which recognize class I major histocompatibility complex (MHC) loci, express the T cell differentiation antigen T8. However, a minority of T8+ CTL clones was found to recognize class II MHC antigens. To test the hypothesis that T8 is involved only in T cell recognition of class I MHC antigens, we studied the role of T8 in the cytotoxic activity of class II MHC-specific CTL. Monoclonal antibodies specific for T8 blocked the activity of most class I MHC-specific CTL clones but did not affect the activity of class II MHC-specific CTL clones. Moreover, a mild trypsin treatment of the clones, which removed and T8 determinant, affected the activity of class I MHC but not that of class II MHC-specific CTL clones. These findings indicate that the class II-specific MHC CTL clones described here did not require T8 for their cytolytic activity. The activity of one T8+ class I MHC-specific (HLA-B27) CTL clone (HG-61) against the B cell line JY, which was used to raise this CTL clone, was not blocked by trypsin treatment of this clone. However, the activity of CTL clone HG-61 against target cells different from JY but carrying the appropriate HLA specificity was blocked by anti-T8 antibodies and trypsin treatment. The implications of these findings for the hypothesis that T8 is involved only in the activity of CTL with a relatively low avidity for class I MHC antigens are discussed.  相似文献   

7.
Primary infection with EBV during acute infectious mononucleosis (IM) is associated with a cytotoxic response against allogeneic target cells. C depletion with anti-CD3 (OKT3) and anti-CD8 (OKT8) mAb decreased the allogeneic cytolysis of two EBV-infected lymphoblastoid cell lines (LCL) by 96% and 89%, respectively. Complement depletion with the NK cell-specific mAb Leu-11b and NKH-1a resulted in only a slight decrease (less than 35%) in the lysis of these LCL. mAb inhibition studies with OKT3 and OKT8 inhibited the allogeneic lysis of two LCL by 87% and 82%, respectively. The alloreactive cytotoxic response was strongly inhibited by mAb specific for MHC class I determinants (W6/32, 65% inhibition and BBM.1, 58% inhibition). Acute IM lymphocytes lysed the allogeneic EBV-negative cell lines HSB2 (45%) and HTLV-1 T cell lines (16%). NK cell-depleted lymphocytes from an acute IM patient demonstrated preferential lysis of K562 transfected with human HLA-A2 (73%) compared with the K562 transfected control (20%). Cold target competition studies with allogeneic and autologous target and competitor LCL demonstrated no significant competitive inhibition between allogeneic and autologous cells. We interpret these results as evidence that 1) the acute IM-alloreactive cytotoxic response is mediated primarily by CTL; 2) these alloreactive CTL lyse allogeneic target cells irrespective of EBV antigenic expression; 3) MHC class I expression is sufficient for allogeneic recognition and lysis of target cells; 4) distinct effector CTL populations mediate lysis of autologous and allogeneic target cells; and 5) during acute IM, EBV infection results in the induction of both virus-specific and alloreactive CTL populations.  相似文献   

8.
We have analyzed the signals influencing the generation of major histocompatibility complex (MHC) class II allospecific cytolytic T lymphocytes (CTL) and have found that the development of these CTL is actively regulated in primary in vitro cultures by Lyt-2+ T cells triggered in response to MHC class I alloantigens. Class II allospecific CTL can be readily stimulated in primary cultures, but the presence of a simultaneous class I MHC stimulus in these cultures causes a marked reduction of class II-specific CTL activation. This reduction can be prevented by adding to culture a dose of monoclonal anti-Lyt-2 antibody (in the absence of complement) that does not block the generation of class I-specific CTL. The role of MHC class I alloantigens in the regulation of class II allospecific responses illustrates that T cells recognizing class I and class II MHC antigens in mixed leukocyte cultures interact in a complex and nonreciprocal manner to influence the final effector T cell repertoire elicited by this complex immunogenic challenge.  相似文献   

9.
In contrast to general findings that mouse and human cytotoxic T lymphocytes (CTL) are restricted in cytotoxic activity by major histocompatibility complex (MHC) class I antigens, we previously found that some herpes simplex virus (HSV) type I-infected cells that shared no HLA class I antigens with the HSV-1-stimulated lymphocytes were lysed. In this study, we addressed the question of the role of HLA antigens in human T cell-mediated lysis of HSV-1-infected cells by generating clones of HSV-1-directed CTL from two HSV-1-seropositive individuals. CTL clones that lysed autologous HSV-1-infected lymphoblastoid cell lines (LCL), but not natural killer-sensitive K562 cells or uninfected or influenza virus-infected LCL, were tested for cytotoxicity against a panel of allogeneic HSV-1-infected LCL. Clone KL-35 from individual KL lysed only HSV-1-infected LCL sharing the HLA class II MB1 antigen with KL. With all four CTL clones isolated from individual PM, only HSV-1-infected LCL sharing DR1 with PM were lysed. Monoclonal antibody s3/4 (directed against MB1 ), but not TS1/16 or B33 .1 (directed against a DR framework determinant), blocked lysis of autologous HSV-1-infected cells by KL-35. In contrast, B33 .1, but not s3/4, blocked lysis of autologous HSV-1-infected cells by the PM CTL clones but not by KL-35. Together, these results indicate that our five human CTL clones which are directed against HSV-1-infected cells, and which are all OKT3+, OKT4+, OKT8-, are restricted in lytic activity by HLA class II MB and DR antigens. These results suggest that the HLA D region-encoded class II antigens may be important in the recognition and destruction of virus-infected cells by human CTL.  相似文献   

10.
Inoculation of 10(8) unirradiated, minor H antigen-incompatible spleen cells into recipients leads to a failure of the induction of cytolytic T lymphocytes (CTL) specific for these antigens. In contrast, a strong CTL response against minor H antigens is obtained when the inoculated cells are irradiated or treated with Thy-1-, Lyt-1- or Lyt-2-specific antibody and complement. Thus the failure of CTL induction is probably due to suppression mediated by radiosensitive, Lyt-1+2+ T cells in the immunizing inoculum. We demonstrate here that the inoculated cells must share class I MHC loci with the recipients for the suppression to occur. Thus, the interaction between the suppressor T (Ts) cells and their targets (presumably the CTL precursors) is restricted by class I molecules. A disparity at class II loci between the inoculated cells and the recipients overrides the class I-restricted suppression, possibly through a positive allogeneic effect. The simplest interpretation of the class I restriction of Ts cell-target cell interaction is that the CTL precursors recognize minor H antigens in the context of class I molecules on the surface of the Ts cells themselves.  相似文献   

11.
Specific binding of target cells by cytotoxic T lymphocytes (CTL) is an example of tight interaction between two different cell types. The molecular events that occur at the cell membranes during these interactions are largely unknown. In the present report, we describe an electron microscopic immunostaining study made on CTL-target cell conjugates. Various membrane structures were labeled with monoclonal antibodies specific for structures possibly relevant to cytolysis (Lyt-2, LFA-1, and target cell class I major histocompatibility antigens) or probably unrelated to the cytolytic process (effector cell class I major histocompatibility antigens). Antibodies against Thy-1 were also used. Staining was achieved with immunoperoxidase or immunoferritin. With both techniques nonconjugated cells were either stained or not, depending on whether they bore the antigen corresponding to the antibody used. However, when conjugated to an antigen-bearing cell, a "non-antigen bearing" cell was labeled near the cell interaction area. No increased Fc receptor activity could be detected on bound cells near the interaction area. These data are consistent with the occurrence of limited exchange of membrane macromolecules between bound CTL and target cell.  相似文献   

12.
The goal of the present study was to evaluate the relationship among function, Lyt phenotype, and MHC recognition specificity in primary allospecific T cell populations. By using Lyt-2+ and L3T4+ T cells obtained from the same responder populations, we assessed the ability of T cells of each phenotype to generate cytotoxic effector cells (CTL) and IL 2-secreting helper T cells in response to either class I or class II MHC allodeterminants. It was found that a discordance between Lyt phenotype and MHC recognition specificity does exist in primary allospecific T cells, but only in one T cell subpopulation with limited functional potential: namely, Lyt-2+ T cells with cytotoxic, but not helper, function that recognize class II MHC alloantigens. Target cell lysis by these Lyt-2+ class II-allospecific CTL was inhibited by anti-Ia monoclonal antibodies (mAb), but not anti-Lyt-2 mAb, indicating that they recognized class II MHC determinants as their "restriction" specificity and not as their "nominal" specificity even though they were Lyt-2+. A second allospecific T cell subset with limited functional potential was also identified but whose Lyt phenotype and MHC restriction specificity were not discordant: namely, an L3T4+ T cell subset with helper, but not cytotoxic, function specific for class I MHC allodeterminants presented in the context of self-Ia. Thus, the present study demonstrates that primary allospecific T cell populations contain phenotypically identical subpopulations of helper and effector cells that express fundamentally different MHC recognition specificities. Because the recognition specificities expressed by mature T cells reflect the selection pressures they encountered during their differentiation into functional competence, these findings suggest that functionally distinct but phenotypically identical T cell subsets may be selected independently of one another during ontogeny. Thus, the existence of Lyt-2+ CTL specific for class II allodeterminants can be explained by the hypothesis that the association of Lyt phenotype with MHC recognition specificity results from the process of thymic selection that these Lyt-2+ effector cells avoid.  相似文献   

13.
Summary Lymphocytes isolated from the blood of TCC patients, like those of control patients, were capable of mediating spontaneous cell-mediated cytotoxicity against K-562 cells. When this natural cytotoxicity was analyzed with regard to the effector cell type it was found that in TCC patients the SLMC was mostly displayed by E-rosetting T lymphocytes, whereas compared with controls, a significant decline in the SLMC of the non-T lymphocytes was observed. The SLMC of the T lymphocytes derived from TCC patients was further demonstrated on a T leukemia target cell (Peer). When the SLMC on K-562 and on Peer target cells was compared, a specificity difference was observed between TCC and the control patients' effector cells. The SLMC activity of the TCC patients' T cells was not abolished after depletion of Fc receptor-positive cells or following treatment with monoclonal antibodies OKT 8 or OKT 4 and complement (C'). These NK-like cells are therefore distinguished from cytotoxic T lymphocytes and NK cells.  相似文献   

14.
Human cytotoxic T cell clones were generated against autologous EBV-transformed B lymphocytes. Whereas the majority of the clones expressed the T8 surface glycoproteins and showed a specificity for class I MHC gene products on the target cell, a minority expressed the T4 surface glycoprotein and demonstrated a class II specificity. Monoclonal antibodies to T4 and T8 inhibited cytotoxic effector function of reactive clones in a fashion analogous to their effect on alloreactive CTL clones. Each autoreactive T cell clone was cytotoxic for EBV-transformed B lymphocytes but not pokeweed mitogen-activated or resting autologous lymphocytes, suggesting a dual specificity for an MHC gene product as well as an antigen induced and/or encoded by virus. Taken together, the present findings provide further support for the notion that T4 and T8 serve as associative recognition elements on T lymphocytes for MHC gene products.  相似文献   

15.
We investigated the lysis of fresh human solid tumor cells by peripheral blood T lymphocytes in the presence of lectins and anti-CD3 monoclonal antibodies (mAb). Addition of certain lectins (Con A, PHA, or WGA) directly into the 4-hr 51Cr-release assay caused significant lysis of (P less than 0.001) noncultured solid tumor targets by enriched populations of granular lymphocytes (GL). Significant levels (P at least less than 0.001) of Con A- or PHA-dependent solid tumor lysis by GL-enriched lymphocytes were observed in 32 of 39 donors (82%) and 14 of 20 donors (70%), respectively. In contrast, the addition of other lectins (PNA, PWM, or LPS) or anti-CD3 mAb did not cause cytotoxicity. The levels of Con A-dependent lysis were comparable to those of interleukin 2 (IL-2)-induced lysis by Leu 11b+ natural killer (NK) cells. The presence of lectins at the effector phase, but not of recombinant IL-2 (rIL-2), was required for the lysis of solid tumor targets. Both Con A-dependent and rIL-2-induced lysis were totally inhibited by treatment of the effector cells with the lysosomotropic agent L-leucine methyl ester (LeuOMe). Effector cells responsible for Con A-dependent lysis of solid tumors expressed T3 (CD3), T8 (CD8), and Leu 7 antigens, but lacked T4 (CD4) and Leu 11 (CD16) antigens as determined by both negative and positive cell selection studies. Con A-dependent lysis was inhibited at the effector phase by anti-CD3 (OKT3 or anti-Leu 4) or anti-CD2 (OKT11) mAb. On the basis of their phenotype (Leu 7+ CD3+ CD8+ CD16-), we hypothesize that these effector cells may contain a population of cytotoxic T cells (CTL) generated in vivo against autologous modified cells that can lyse fresh solid tumor target cells under conditions where the recognition requirements for the CTL are bypassed by lectin approximation.  相似文献   

16.
The susceptibility of human neuroblastoma cells to direct cellular cytotoxicity has not been previously established. This is of particular interest because of their aggressive growth and low HLA expression. Neuroblastoma lines CHP 100 and CHP 126 were found to be excellent targets in 4-hr CML assays. Natural killer (NK) cells from fresh PBL and from an NK clone, 3.3, have high lytic activity against both cell lines. We also studied mixed lymphocyte culture-generated cytotoxic lines containing allo-specific cytotoxic T lymphocytes (CTL) directed against HLA antigens present on the neuroblastoma target cell lines. These lines did show excellent lytic activity, but cold target competition studies indicated that all of the lysis resulted from NK activity. This was verified by using inhibition studies with the use of monoclonal antibodies. OKT 3 and anti-HLA antibodies that block CTL function caused no reduction in kill. In contrast, anti-lymphocyte function antigen-1 (anti-LFA-1), which blocks both NK and CTL function, significantly inhibited lysis. These results serve as a functional confirmation of earlier findings of a very weak expression of HLA-A,B,C and beta 2-microglobulin on neuroblastoma cells.  相似文献   

17.
Human peripheral blood lymphocytes (PBL), from anti-Epstein-Barr virus (EBV)-seropositive donors, were stimulated by EBV and were shown to be cytotoxic toward autologous, HLA-compatible, and fully allogeneic EBV-transformed target cells. The lysis was not due to natural killer (NK) cells since the target cells used were resistant to lysis by fresh PBL and by virus-stimulated PBL-depleted of AET-SRBC-rosetting T cells (the latter being still fully cytotoxic on K562 NK-susceptible target cells). Conversely only E-rosette-purified (T) lymphocytes killed EBV-transformed HLA-compatible and allogeneic target cells. Moreover, anti-MHC antibodies inhibited the cytotoxicity exerted by EBV-induced cytotoxic T lymphocytes (CTL) on both autologous and allogeneic target cells. Finally the lysis was EBV specific since PHA blasts were not killed and since only EBV-transformed cells could compete for lysis with the EBV-positive target cells. Efficient competition was achieved by EBV-transformed cells autologous or allogeneic to the targets, even when effector and target cells were fully allogeneic. All together, the data suggest that human anti-EBV CTL may recognize nonpolymorphic HLA determinants on the target cells in association with the virus-induced antigens.  相似文献   

18.
The effect of a panel of monoclonal antibodies and heteroantibodies on T-cell proliferation in various assay systems has been examined. The antibodies tested were directed against T-cell differentiation antigens, HLA-DR antigens, and structures defined by an anti-human VH antiserum. As the test cell system highly purified subpopulations of T-cell growth factor (TCGF)-dependent T-cell lines activated either by mitogen or antigen were used. A survey of the data indicates the following: (1) Mitogenic and antigenic triggering of T lymphocytes are mediated through partly different membrane structures. (2) Antigenic stimulation by purified protein derivative (PPD) as well as polyclonal activation induced by OKT3/anti-Leu 4 monoclonal antibodies can be inhibited by heteroantibodies raised against human immunoglobulin VH fragments thus pointing to a possible connection between the antigens detected by these antisera. (3) There does not seem to be differences between the two major subpopulations of T lymphocytes (i.e., helper/inducer and suppressor/cytotoxic cells) as to how they respond to antigens or mitogens in the investigated assay systems. (4) A clear distinction was found between T blasts specific for PPD and allogeneic cells as compared to cytotoxic T cells (CTL), as the T4 and T8 antigens seem to be functionally important for antigen recognition among CTL but not for the blasts proliferating in response to PPD and allogeneic cells. (5) An inhibitory effect of OKT3/anti-Leu 4, OKIal, and anti-HLA-DR on TCGF-dependent growth was detected, possibly indicating a steric relationship between these antigens and TCGF receptors on mitogen-induced T blasts. (6) Soluble factors obtained after incubating adherent cells with OKIal and anti-HLA-DR antibodies seemed to have an inhibitory effect on overall T-cell proliferation stressing the importance of studying the T-cell activation process at different levels in these kinds of experiments. (7) The results further suggest a complexity in the build up of antigen receptors on the various T-effector cells, perhaps also involving receptors for growth factors, HLA-DR antigens, and receptors for the latter.  相似文献   

19.
Sensitivity to L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) was used to characterize the phenotype of human activated killer cells. Natural killer cells (NK) and the precursors of both the alloantigen-specific cytotoxic T lymphocytes (CTL) and the NK-like activated killer cells generated after stimulation with allogeneic cells were deleted from human peripheral blood lymphocytes by preincubation with Leu-Leu-OMe. It was noted, however, that cytotoxic lymphocytes could be generated from Leu-Leu-OMe-treated lymphocyte precursors after 2 to 6 days of culture with the nonspecific mitogen, phytohemagglutinin (PHA). The characteristics of these killer cells indicated that they were a unique population that could be distinguished from other cytotoxic cells. Killing by these cells exhibited slow kinetics in that 18 hr cytotoxicity assays were required to detect full cytotoxic potential. When 18 hr assays were used, PHA-stimulated cytotoxic cells generated from Leu-Leu-OMe-treated lymphocytes were able to kill both NK-sensitive K562 cells and the relatively NK-resistant renal cell carcinoma cell line, Cur. These cytotoxic lymphocytes were HNK-1, Leu-11b (CD16), and OKM1 (CR3)-negative at both the precursor and effector stage of activation. Furthermore, these cells were derived from a CD3-positive precursor. Finally, killing by activated effectors was inhibited by OKT3. Unlike activation of Leu-Leu-OMe-sensitive large granular lymphocytes, generation of these cytotoxic T cells was totally prevented by treatment with mitomycin c before stimulation. Thus, a unique class of tumoricidal T cells can be characterized by resistance of lymphocyte precursors to a concentration of Leu-Leu-OMe, which has been shown to ablate NK, mixed lymphocyte culture-activated NK-like cytotoxic precursors, and the precursors of alloantigen-specific CTL.  相似文献   

20.
We have examined the effect of several monoclonal antibodies (MoAb) to monomorphic determinants of class II HLA antigens, and MoAb to monomorphic determinants of class I HLA antigens and to beta-2-microglobulin (beta 2-mu) on lectin- and MoAb OKT3-induced proliferation of human peripheral blood mononuclear cells (PBMNC) and cultured T cells (CTC). Some, but not all, anti-class II HLA MoAb inhibited the proliferative response of PBMNC to MoAb OKT3 and pokeweed mitogen (PWM). The degree of inhibitory effect varied considerably. This effect was not limited to anti-class II HLA MoAb since anti-class I HLA MoAb and anti-beta 2-mu MoAb also inhibited MoAb OKT3- or PWM-induced proliferative responses. In contrast, the response of PBMNC to phytohemagglutinin (PHA) and concanavalin A (Con A) was not blocked by any anti-class II HLA MoAb. However, some anti-class II HLA MoAb also inhibited the proliferative response of CTC plus allogeneic peripheral blood adherent accessory cells (AC) to PHA or Con A as well as to MoAb OKT3 or PWM. This may be attributable to the substantially greater class II HLA antigen expression by CTC than by fresh lymphocytes. Pretreatment of either CTC or AC with anti-class II HLA MoAb inhibited OKT3-induced proliferation. In contrast, pretreatment of CTC, but not AC, with anti-class I HLA MoAb inhibited the proliferative response of CTC to OKT3. Pretreatment of CTC with anti-class I HLA MoAb inhibited PHA-, Con A and PWM-induced proliferation, to a greater degree than the anti-class II HLA MoAb. It appears as if lymphocyte activation by different mitogens exhibits variable requirements for the presence of cells expressing major histocompatibility determinants. Binding of Ab to membrane markers may interfere with lymphocyte-AC cooperation, perhaps by inhibiting binding of mitogens to their receptors or by interfering with lymphocyte and AC function. We also have examined the role of class II HLA antigens on CTC by depleting class II HLA-positive cells. As expected, elimination of class II HLA-positive AC with anti-class II HLA MoAb plus complement caused a decrease in proliferation of CTC in response to all the mitogens tested. In contrast, elimination of class II HLA-positive CTC was shown to clearly increase proliferation of CTC, perhaps because this may deplete class II HLA-positive suppressor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号