首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T7 antirestriction protein Ocr, encoded by 0.3 (ocr), specifically inhibits ATP-dependent type I restriction-modification systems. T7 0.3 (ocr) was cloned in pUC18. Ocr inhibited both restriction and modification activities of the type I restriction-modification system (EcoKI) in Escherichia coli K12. The Ocr F53D A57E mutant was obtained and proved to inhibit only restriction activity of EcoKI. The 0.3 (ocr) and Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P ltetO-1 promoter, strongly controlled by the TetR repressor. The bioluminescence intensity and luciferase content varied up to 5000-fold in E. coli K12 MG1655Z1 tetR+ (pZE21-luxCDABE) cells, depending on the environmental concentration of the inductor anhydrotetracycline. The antirestriction activity of Ocr and Ocr F53D A57E was studied as a function of their concentration in the cell. The dissociation constant K d, characterizing the binding with EcoKI, differed 1000-fold between Ocr and Ocr F53D A57E (10?10 M versus 10?7 M).  相似文献   

2.
The ArdA and Ocr antirestriction proteins, whose genes are in transmissible plasmids (ardA) and bacteriophage genomes (0.3 (ocr)), specifically inhibit type I restriction-modification enzymes. The Ocr protein (T7 bacteriophage) was shown to inhibit both restriction (endonuclease) and modification (methylase) activities of the EcoKI enzyme in a broad range of intracellular concentrations (starting from 10–20 molecules per cell). In contrast to Ocr, the ArdA protein (ColIb-P9 transmissible plasmid) inhibited both of the EcoKI activities only at high intracellular concentrations (30000–40000 molecules per cell). When the ArdA concentration was several fold lower, only endonuclease activity of EcoKI was inhibited. It was assumed that a poorer ArdA ability to inhibit EcoKI modification activity is related to the substantial difference in life cycle between transmissible plasmids (symbiosis with the bacterial cell) and bacteriophages (infection and lysis of bacteria). The Ocr and ArdA mutants that inhibited exclusively endonuclease activity of EcoKI were obtained. Antirestriction proteins incapable of homodimerization were assumed to inhibit only endonuclease activity of type I restriction-modification enzymes.  相似文献   

3.
Antirestriction proteins ArdA and ArdB are specific inhibitors of type I restriction-modification enzymes. The ardA and yfeB (ardB) genes were cloned from the transmissible plasmid R64 in the pUC18 and pZE21 vectors. The R64 ArdA and ArdB proteins were shown to inhibit only restriction activity of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. In contrast to ArdA, ArdB inhibited EcoKI restriction activity only at a high intracellular concentration. Antirestriction activity of ArdB did not depend on the ClpXP protease. The yfeB (ardB) gene of the R64 plasmid is transcribed from a weak promoter located upstream of yfeA.  相似文献   

4.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

5.
6.
7.
The Ocr antirestriction protein, which is encoded by bacteriophage T7 0.3 (ocr), specifically inhibits type I restriction-modification enzymes. Ocr belongs to a family of DNA-mimicking proteins. Native Ocr forms homodimers both in solution and in crystal. Ocr mutants with two amino acid substitutions (Orc F53D A57E and Ocr F53R V77D) were constructed to occur as monomers in solution. The dissociation constant K d for the Ocr complex with EcoKI (R2M2S) proved to differ by three orders of magnitude between the (Ocr)2 dimer and Ocr F53D A57E and Ocr F53R V77D monomers (10?10 M vs. 10?7 M). Antimodification activity was substantially lower in the Ocr monomers. The dimeric form found to be essential for high inhibitory activity of Ocr.  相似文献   

8.
The transmissive plasmid IncI1 R64 contains the ardA gene encoding the ArdA antirestriction protein. The R64 ardA gene locating in the leading region of plasmid R64 has been cloned and their sequence has been determined. Antirestriction proteins belonging to the Ard family are specific inhibitors of type I restriction-modification enzymes. The IncI1 ColIb-P9 and R64 are closely related plasmids, and the latter specifies an ArdA homologue that is predicted to be 97.6% (162 residues from 166) identical at the amino acid sequence level with the ColIb = P9 equivalent. However, the R64 ArdA selectively inhibits the restriction activity of EcoKi enzyme leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The ColIb-P9 ArdA inhibits restriction endonuclease and methyltransferase activities simultaneously. It is hypothesized that the ArdA protein forms two complexes with the type I restriction-modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonuclease. The association of the ColIb-P9 ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of the R64 ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

9.
The transmissive plasmid R64 (IncI1) performs an antirestriction function, reducing the efficiency of EcoKI-dependent restriction in Escherichia coli K12 cells approximately fivefold. The R64 ardA gene has been cloned and sequenced. The ArdA proteins specifically inhibit type I restriction–modification enzymes. R64 ArdA is highly homologous to ColIb-P9 ArdA: only 4 out of 166 amino acid residues differ. While ColIb-P9 inhibits both endonuclease and methylase activities of the type I restriction–modification enzyme EcoKI (R2M2S), R64 ArdA inhibits only its endonuclease activity. It has been assumed that R64 ArdA suppresses the binding of unmodified DNA with the R subunit, which is responsible for DNA translocation and cleavage. ColIb-P9 ArdA suppresses DNA binding not only with the R, but also with the S subunit, which contacts the sK site containing target adenines. The binding of ArdA with the specific site inhibits both endonuclease and methylase activities; the binding of ArdA with the nonspecific site of the R subunit inhibits only the endonuclease activity ofEcoKI (R2M2S).  相似文献   

10.
A number of mutant forms of the antirestriction protein ArdA encoded by theardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction–modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the antirestriction motif with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction–modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

11.
The bark of Sambucus nigra contains a complex mixture of glycoproteins that are characterized as chimeric lectins known as type II ribosome inactivating proteins and holo lectins. These type II ribosome inactivating proteins possess RNA N-glycosidase activity in subunit A and lectin activity associated with subunit B exhibiting distinct sugar specificities to NeuAc(α2-6)-Gal/GalNAc and Gal/GalNAc. In the present study we have determined the N-glycosylation pattern of type II ribosome inactivating protein specific to NeuAc(α2-6)-Gal/GalNAc (Sambucus nigra agglutinin I) by subjecting it to digestion with multiple proteases. The resulting mixture of peptides and N-glycopeptides were analyzed on liquid chromatography coupled to electro spray ionization-iontrap mass spectrometry in MSn mode. MS2 of precursor ions was carried out using CID which provided information on glycan sequence. In subsequent MS3 of Y1/Y ions (peptide + HexNAc)+n of corresponding N-glycopeptides, resulted in the fragmentation of peptide backbone confirming the site of attachment. We observed microheterogeneity in each glycan occupied site with subunit A possessing four N-glycans out of six sites with complex and paucimannose types while subunit B comprises occupancy of two sites with a paucimannose and a high mannose type. The differential N-glycosylation of subunits in SNA is discussed in the context of other type II RIPs glycans.  相似文献   

12.
Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA—A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form—were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.  相似文献   

13.
Anti-restriction proteins ArdA and Ocr are specific inhibitors of type I restriction-modification enzymes. The IncI1 transmissible plasmid ColIb-P9 ardA and bacteriophage T7 0.3(ocr) genes were cloned in pUC18 vector. Both ArdA (ColIb-P9) and Ocr (T7) proteins inhibit both restriction and modification activities of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. ColIb-P9 ardA, T7 0.3(ocr), and the Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P(ltetO-1) promoter, which is tightly repressible by the TetR repressor. Controlling the expression of the lux-genes encoding bacterial luciferase demonstrates that the P(ltetO-1) promoter can be regulated over an up to 5000-fold range by supplying anhydrotetracycline to the E. coli MG1655Z1 tetR(+) cells. Effectiveness of the anti-restriction activity of the ArdA and Ocr proteins depended on the intracellular concentration. It is shown that the dissociation constants K(d) for ArdA and Ocr proteins with EcoKI enzyme differ 1700-fold: K(d) (Ocr) = 10(-10) M, K(d) (ArdA) = 1.7.10(-7) M.  相似文献   

14.
RecA first forms a filament on single-stranded DNA (ssDNA), thereby forming the first site for ssDNA binding and, simultaneously, the second site for binding double-stranded DNA (dsDNA). Then, the nucleoprotein filament interacts with dsDNA, although it can bind ssDNA as well. The resulting complex searches for homology sites and performs strand exchange between homologous DNA molecules. The interaction of various ssDNAs with the second DNA-recognizing site of RecA was studied by gradually increasing the structural complexity of the DNA ligand. Recognizing ssDNA with the second site, the protein interacts with each nucleotide of the ligand, forming contacts with both internucleotide phosphate groups and nitrogen bases. Pyrimidine oligonucleotides d(pC) n and d(pT) n interacted with the second site of the RecA filament more efficiently than d(pA) n did. This was due to a more efficient interaction of the RecA filament with the 5′-terminal nucleotide of pyrimidinic DNA and to the difference in specific conformational changes of the nucleoprotein filament in the presence of purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition at the first and second DNA-binding sites of the filament showed that, at n > 10, d(pC) n and d(pN) n were bound at the second site less tightly than at the first site. At n > 20, the second site bound d(pA) n more efficiently than the first site. The difference in d(pN) n affinity for the first and second sites increased monotonically with increasing n. Possible mechanisms of a RecA-dependent search for homology and DNA strand exchange are discussed.  相似文献   

15.
Application of plant growth regulators (PGRs) to soybean plants is known to induce changes in nitrogenase activity in root nodules, and this led us to hypothesize that PGRs would affect nitrogenase activity in free-living rhizobia cultures. Little is known about the molecular basis of the effects of PGRs on nitrogenase activity in free-living rhizobia cultures. Therefore, a comparative study was conducted on the effects of gibberellins (GA3) and mepiquat chloride (PIX), which regulate plant growth, on the nitrogenase activity of the nitrogen-fixing bacterium Bradyrhizobium japonicum. Fix and nif gene regulation and protein expression in free-living cultures of B. japonicum were investigated using real-time PCR and two-dimensional electrophoresis after treatment with GA3 or PIX. GA3 treatment decreased nitrogenase activity and the relative expression of nifA, nifH, and fixA genes, but these effects were reversed by PIX treatment. As expected, several proteins involved in nitrogenase synthesis were down-regulated in the GA3-treated group. Conversely, several proteins involved in nitrogenase synthesis were up-regulated in the PIX-treated group, including bifunctional ornithine acetyltransferase/N-acetylglutamate synthase, transaldolase, ubiquinol-cytochrome C reductase iron-sulfur subunit, electron transfer flavoprotein subunit beta, and acyl-CoA dehydrogenase. Two-pot experiments were conducted to evaluate the effects of GA3 and PIX on nodulation and nitrogenase activity in Rhizobium-treated legumes. Interestingly, GA3 treatment increased nodulation and depressed nitrogenase activity, but PIX treatment decreased nodulation and enhanced nitrogenase activity. Our data show that the nif and fix genes, as well as several proteins involved in nitrogenase synthesis, are up-regulated by PIX and down-regulated by GA3, respectively, in B. japonicum.  相似文献   

16.
Ting Ma  Jia Huang 《Biologia》2018,73(12):1205-1213
A new species of the genus Morellia Robineau-Desvoidy, 1830, Morellia (Morellia) trifurcata sp. n., collected from Yunnan, China is described. Four DNA sequences of the partial mitochondrial cytochrome c oxidase subunit I (mtCOI) gene of this new species are provided. In order to evaluate the availability of DNA barcoding for identifying Morellia species, 38 currently available, non-identical COI sequences of 16 Morellia species are involved in a molecular analysis using the neighbor-joining (NJ) method. The intra- and interspecific p-distances are summarized.  相似文献   

17.
We examined the utility of the cytochrome c oxidase subunit I (COI) and II (COII) genes of mitochondrial DNA (mtDNA) as a tool to identify nine Japanese Lymantria species, including four Asian gypsy moth species [Lymantria dispar japonica (Motschulsky), Lymantria umbrosa (Butler), Lymantria albescens Hori and Umeno, and Lymantria postalba Inoue]. In phylogenetic trees constructed for the COI and COII genes using the maximum likelihood methods, we could identify seven out of the nine Lymantria species (L. albescens and L. postalba could not be identified). These results suggest that the DNA sequences of the COI and COII genes are useful for identifying Japanese Lymantria species.  相似文献   

18.
19.
Antirestriction proteins Ard encoded by some self-transmissible plasmids specifically inhibit restriction by members of all three families of type I restriction-modification (R-M) systems in E.coli. Recently, we have identified the amino acid region, 'antirestriction' domain, that is conserved within different plasmid and phage T7-encoded antirestriction proteins and may be involved in interaction with the type I R-M systems. In this paper we demonstrate that this amino acid sequence shares considerable similarity with a well-known conserved sequence (the Argos repeat) found in the DNA sequence specificity (S) polypeptides of type I systems. We suggest that the presence of these similar motifs in restriction and antirestriction proteins may give a structural basis for their interaction and that the antirestriction action of Ard proteins may be a result of the competition between the 'antirestriction' domains of Ard proteins and the similar conserved domains of the S subunits that are believed to play a role in the subunit assembly of type I R-M systems.  相似文献   

20.
We present an overview of the gene content and organization of the mitochondrial genome of Dictyostelium discoideum. The mitochondria genome consists of 55,564?bp with an A + T content of 72.6%. The identified genes include those for two ribosomal RNAs (rnl and rns), 18 tRNAs, ten subunits of the NADH dehydrogenase complex (nad1, 2, 3, 4, 4L, 5, 6, 7, 9 and 11), apocytochrome b (cytb), three subunits of the cytochrome oxidase (cox1/2 and 3), four subunits of the ATP synthase complex (atp1, 6, 8 and 9), 15 ribosomal proteins, and five other ORFs, excluding intronic ORFs. Notable features of D. discoideum mtDNA include the following. (1) All genes are encoded on the same strand of the DNA and a universal genetic code is used. (2) The cox1 gene has no termination codon and is fused to the downstream cox2 gene. The 13 genes for ribosomal proteins and four ORF genes form a cluster 15.4?kb long with several gene overlaps. (3) The number of tRNAs encoded in the genome is not sufficient to support the synthesis of mitochondrial protein. (4) In total, five group I introns reside in rnl and cox1/2, and three of those in cox1/2 contain four free-standing ORFs. We compare the genome to other sequenced mitochondrial genomes, particularly that of Acanthamoeba castellanii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号