首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variants of the carboxyl-terminal KDEL sequence direct intracellular retention   总被引:13,自引:0,他引:13  
Soluble proteins which reside in the lumen of the endoplasmic reticulum share a common carboxyl-terminal tetrapeptide Lys-Asp-Glu-Leu (KDEL). Addition of the tetrapeptide to a normally secreted protein is both necessary and sufficient to cause retention in the endoplasmic reticulum. In order to characterize the critical residues in the KDEL signal, cDNAs encoding proneuropeptide Y (pro-NPY) with the 4-amino acid carboxyl-terminal extension KDEL or a series of KDEL variants were expressed in the AtT-20 cell line. AtT-20 cells, a mouse anterior pituitary corticotrope cell line, synthesize, process, and secrete the pro-ACTH/endorphin precursor. Since post-translational processing in AtT-20 cells has been extensively characterized, it provides a model system in which the processing of a foreign peptide precursor (pro-NPY) and the endogenous precursor (pro-ACTH/endorphin) can be compared. Altered cDNAs encoding pro-NPY with KDEL, DKEL, RDEL, KNEL, KDQL, or KDEA at the COOH terminus were used to generate stable AtT-20 cell lines. The processing of pro-NPY to neuropeptide Y and the carboxyl-terminal peptide was studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic peptide mapping, and radiosequencing. Addition of the tetrapeptides KDEL, DKEL, RDEL, or KNEL to the COOH terminus of the neuropeptide Y precursor, a peptide hormone normally processed and secreted from neuronal cells, caused complete intracellular retention of the unprocessed prohormone in AtT-20 cells. However, KDQL and KDEA-extended pro-NPY molecules were processed and secreted like wild-type pro-NPY when expressed in AtT-20 cells. The secretion of proNPY-derived peptides in these cell lines paralleled secretion of endogenous pro-ACTH/endorphin-derived products under both basal and stimulated conditions. These mutagenesis studies demonstrate that variants of the KDEL retention signal can direct intracellular retention.  相似文献   

2.
Mouse pro-ACTH/endorphin (or POMC) contains in its sequence each of the four possible pairs of basic amino acids recognized as potential cleavage sites in the production of bioactive peptides from higher mol wt precursors: KR (lysine-arginine), RR, RK, and KK. To examine the structural requirements for processing and routing in one region of pro-ACTH/endorphin, a reporter mutation was introduced into the mouse pro-ACTH/endorphin cDNA; a methionine residue was mutated to an isoleucine residue to allow biosynthetic double labeling with [3H]Ile and [35S]Met. Analysis of stable cell lines expressing the reporter cDNA indicated that this mutation did not affect processing or secretion. Therefore, additional mutations were introduced on the reporter background to investigate important structural features of the precursor. First, the tripeptide signal for N-linked glycosylation in the N-terminal glycopeptide (Asn65,Ser66,Ser67) was disrupted by the conservative substitution of asparagine65 with a glutamine residue. Secondly, O-glycosylation was prevented by substitution of threonine45 with an alanine residue. Finally, lysine50 was mutated to an arginine residue, transforming the RK doublet preceding the gamma 3MSH sequence into an RR doublet. The results show that the enzymatic machinery of AtT-20 cells fails to cleave efficiently at the Arg-Lys (RK) site even after elimination of any possible structural hindrance by carbohydrate side-chains. Elimination of O-linked oligosaccharides to the N-terminal side of gamma 3MSH did not allow cleavage at the RK site, and elimination of N-linked oligosaccharides did not alter the processing and routing of pro-ACTH/endorphin in AtT-20 cells. However, mutation of the RK sequence to RR allowed extensive cleavage regardless of the occurrence of O- or N-glycosylation.  相似文献   

3.
An expression vector was constructed that placed the cDNA for human neuropeptide Y (NPY) under the control of the mouse metallothionein promoter and was used to transfect the AtT-20 mouse anterior pituitary corticotrope cell line. AtT-20 cells normally process the pro-ACTH/endorphin precursor but do not produce detectable levels of NPY. The resulting AtT-20/NPY cell line (Mt.NPY1a) was used to study the ability of the corticotrope cells to synthesize, process, and secrete the foreign proNPY-related peptide products. The stable cell line created contains approximately 40 copies of proNPY cDNA per cell. NPY mRNA levels and proNPY synthesis were increased at least 35-fold when maximally induced with cadmium; proNPY synthesis was also induced by glucocorticoids. Upon induction the NPY secretion rate was equimolar to that of the endogenous peptides. ProNPY, NPY, and the COOH-terminal peptide produced by this cell line had molecular weight and amino acid-labeling pattern predicted from cDNA sequence data and from previous isolation of NPY-related molecules from NPY-producing cells. The structures of secreted proNPY, NPY, and COOH-terminal peptide, as well as determination of the site of proteolytic cleavage between NPY and the COOH-terminal peptide, were determined by tryptic mapping and Edman degradation of secreted biosynthetically labeled peptide products. The proNPY molecule appears to be processed in the same pathway responsible for cleavage of the endogenous pro-ACTH/endorphin precursor. Secretion of proNPY-derived peptides paralleled secretion of endogenous pro-ACTH/endorphin-derived products, under both basal and stimulated conditions. With induction proNPY expression there is a dose-dependent inhibition of both proNPY and pro-ACTH/endorphin proteolytic processing.  相似文献   

4.
Atrial natriuretic factor (ANF) is stored within atrial myocyte secretory granules as pro-ANF (ANF-(1-126] and is proteolytically processed co-secretionally C-terminal to a single basic amino acid to form ANF-(1-98) and the bioactive product ANF-(99-126). Pro-ANF is also expressed in certain non-cardiac neuroendocrine cell types (e.g. brain, adrenal). Although the relatively low levels of the peptide in these cell types have precluded detailed processing and secretion studies using cultured cells, some work with tissue extracts suggests that pro-ANF is pre-secretionally processed between or C-terminal to Arg101-Arg102 in such cells. In order to assess whether cultured non-cardiac endocrine cells process pro-ANF pre- or co-secretionally, and to establish whether both paired and single basic amino acids can serve as cleavage sites, transfection studies were carried out using the adrenocorticotropic hormone (ACTH)-producing pituitary tumor cell line AtT-20/D-16v. These cells normally cleave pro-ACTH/endorphin pre-secretionally at selected, but not all, pairs of basic amino acids to a variety of product peptides. A prepro-ANF expression plasmid was constructed and transfected into the AtT-20 cells. The resulting ANF/AtT-20 cell clone selected for this study expressed ACTH at levels similar to the untransfected wild type cells and secreted immunoreactive ANF-related material at a rate of approximately 1 fmol/min/10(5) cells, which was about 10% the rate of ACTH secretion. The rates of secretion of both ANF and ACTH could be increased 3-5-fold with a variety of known AtT-20 cell secretagogues including phorbol esters and the beta-adrenergic agonist, isoproterenol, thus indicating that both peptides were routed through regulated secretory pathways. Utilizing a combination of specific antisera directed against various regions of pro-ANF, size exclusion and reversed phase high performance liquid chromatography, and peptide mapping, it was shown that the ANF/AtT-20 cells contained and secreted the bioactive peptide ANF-(103-126) and -(1-97). These results indicate that the ANF/AtT-20 cells specifically cleave pro-ANF pre-secretionally at the same single basic site used by cardiac tissue; this single basic cleavage is apparently followed by removal of Arg98 by carboxypeptidase H. It is also apparent that the cells can cleave at the sole paired basic site in pro-ANF, which is the probable cleavage site used by neurons and some other endocrine cells that express low levels of the prohormone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Four dodecapeptides of general formula Tyr-Gly-Gly-Phe-Met-X-X-Tyr-Gly-Gly-Phe-Met-NH2 (Enk-X-X-Enk-NH2) possessing X = Arg or Lys have been synthesized and subjected to cleavage by trypsin. The peptide with the sequence containing -Lys-Arg-, depicted as BI-NH2, represents the 100–111 segment of proenkephalin. The time course of the degradation was followed by high performance liquid chromatography. This method allows one to observe the formation of not only the final but also intermediate peptides. Among the peptides studied, the most susceptible to the cleavage was BI-NH2. The primary hydrolysis proceeded rapidly at the arginine residue, followed by slow release of arginine. The other peptides (with -Arg-Arg-, -Lys-Lys- and -Arg-Lys-) were cleaved at both possible positions, but the resulting mixture contained Enk-X as a major product, which was the result of both primary and secondary cleavage.  相似文献   

6.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

7.
Peptidylmethylsulphonium salts incorporating consecutive basic residues at the C-terminus of the peptidyl portion such as -Arg-Arg-, -Arg-Lys-, -Lys-Lys- and -Lys-Arg- were synthesized and examined as proteinase inhibitors. Serine proteinases with a specificity directed towards hydrolysis at cationic residues were found to be unaffected by these derivatives. On the other hand, cysteine proteinases, cathepsin B and, in particular, clostripain were readily inactivated by affinity labelling. The reagents thus are of promise for the study of prohormone processing promoted by cysteine proteinases.  相似文献   

8.
Based on sequence data, rat and mouse pro-adrenocorticotropin (ACTH)/endorphin could give rise to joining peptide, a short acidic peptide that could terminate with a glutamic acid alpha-amide. Rat and mouse pituitary cells were found to cleave the pro-ACTH/endorphin precursor at an -Arg-Arg- site to produce primarily joining peptide-sized material. The amounts of joining peptide were approximately equimolar to the other major pro-ACTH/endorphin-derived products. Using antisera specific for the COOH-terminal modifications of joining peptide and three analytical approaches which separate amidated from glycine-extended forms of joining peptide, it was found that most of the joining peptide in murine anterior and intermediate pituitary was amidated. Identification of the amidated and glycine-extended forms of joining peptide was confirmed by amino acid analysis of the purified molecules. When anterior pituitary corticotrope tumor cells were grown in culture medium lacking ascorbate, there was no detectable ascorbate in the cells; nevertheless, a significant fraction of the joining peptide produced was alpha-amidated, indicating that production of alpha-amidated product was not totally dependent on ascorbate. The amidation state of the joining peptide produced by mouse corticotrope tumor cells was responsive to added ascorbate. Cells grown in medium containing ascorbic acid at the levels found in plasma concentrated the ascorbate to the levels normally found in pituitary tissue, and nearly all of the joining peptide produced was alpha-amidated. The amidation state of secreted joining peptide mirrored the amidation state of the joining peptide in the cells.  相似文献   

9.
Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment.  相似文献   

10.
Many peptide hormones are produced from larger precursors by endoproteolysis at pairs of basic amino acids (e.g. Lys-Arg and Arg-Arg) within the regulated secretory pathway in endocrine cells. However, many other secretory and membrane proteins appear to be produced from precursors through cleavage at multiple, rather than paired, basic residues within the constitutive secretory pathway in non-endocrine cells. By surveying various precursors processed constitutively, we noticed that most of them have the consensus sequence, Arg-X-Lys/Arg-Arg (RXK/RR), at the cleavage site. When expressed in endocrine and non-endocrine cells, a precursor with the RXKR sequence was cleaved in both types of cells, whereas that with the Lys-Arg pair was cleaved only in the endocrine cells. When the RXKR precursor was coexpressed with furin and PC3, both of which are mammalian homologues of the yeast precursor-processing endoprotease Kex2, in non-endocrine cells, enhancement of the precursor cleavage by furin but not by PC3 was observed. By contrast, when the Lys-Arg precursor was coexpressed with the two mammalian proteases in endocrine cells with no endogenous processing activity at dibasic sites, it was cleaved only by PC3. These results indicate that the basic pair and the RXK/RR sequence are the signals for precursor cleavages catalyzed by PC3 within the regulated secretory pathway and by furin within the constitutive pathway, respectively.  相似文献   

11.
The amino acid sequences of two previously uncharacterized regions of the mouse anterior pituitary common precursor to adrenocorticotropin (ACTH) and beta-endorphin (pro-ACTH/endorphin) were determined. Portions of the NH2-terminal region of pro-ACTH/endorphin (called the 16K fragment) and the region between ACTH and beta-endorphin (called gamma-lipotropin) were sequenced by Edman degradations of biosynthetically labeled immunoprecipitated proteins and by Edman degradations of purified 16K fragment and beta-lipotropin. With a combination of these two approaches, 29 of the first 34 residues at the NH2-terminal end of the mouse 16K fragment were determined. The NH2-terminal region of the mouse 16K fragment was found to be nearly identical with the homologous porcine and bovine molecules. The complete amino acid sequence of the NH2-terminal region of gamma-lipotropin was determined. In contrast to the highly conserved nature of the 16K fragment, mouse gamma-lipotropin was found to differ substantially from the gamma-lipotropins of other species. Although the NH2-terminal and beta-melanotropin-like regions of the mouse gamma-lipotropin are similar to the corresponding regions of other gamma-lipotropins, the intervening region of mouse gamma-lipotropin is substantially shorter than it is in other gamma-lipotropins. In addition, mouse gamma-lipotropin lacks the pair of basic amino acids that normally mark the proteolytic cleavage site used to produce beta-melanotropin from gamma-lipotropin.  相似文献   

12.
Many bioactive peptides terminate with an amino acid alpha-amide at their COOH terminus. The enzyme responsible for this essential posttranslational modification is known as peptidyl-glycine alpha-amidating monooxygenase or PAM. We identified cDNAs encoding the enzyme by using antibodies to screen a bovine intermediate pituitary lambda gt11 expression library. Antibodies to a beta-galactosidase/PAM fusion protein removed PAM activity from bovine pituitary homogenates. The 108,207 dalton protein predicted by the complete cDNA is approximately twice the size of purified PAM. An NH2-terminal signal sequence and short propeptide precede the NH2 terminus of purified PAM. The sequences of several PAM cyanogen bromide peptides were localized in the NH2-terminal half of the predicted protein. The cDNA encodes an additional 430 amino acid intragranular domain followed by a putative membrane spanning domain and a hydrophilic cytoplasmic domain. The forms of PAM purified from bovine neurointermediate pituitary may be generated by endoproteolytic cleavage at a subset of the 10 pairs of basic amino acids in the precursor. High levels of PAM mRNA were found in bovine pituitary and cerebral cortex. In corticotropic tumor cells, levels of PAM mRNA and pro-ACTH/endorphin mRNA were regulated in parallel by glucocorticoids and CRF.  相似文献   

13.
The human protein C precursor undergoes extensive co- and posttranslational modification during its biosynthesis in the liver. These modifications include glycosylation, gamma-carboxylation, and beta-hydroxylation of specific amino acids and endoproteolytic processing to remove the pre- and propeptides as well as the pair of basic amino acids which connect the light and heavy chains in the precursor. Previous studies with a recombinant mammalian expression system have indicated that the endopeptidase in several mammalian cell types which recognizes and cleaves this dibasic site has a substrate specificity for sites which also include a basic amino acid in the -4 position (Foster et al., 1990). Since the human protein C precursor has His154 in the -4 position, it is poorly and incompletely cleaved in BHK and several other mammalian cell lines and also apparently secreted from the liver as a mixed population of mature two-chain and precursor one-chain molecules. In the present study, a mammalian expression system has been used to study the effect of coexpressing the protein C precursor together with the yeast Kex2 endopeptidase which is known to recognize and process dibasic pairs within peptide precursors in yeast. Coexpression of the KEX2 gene resulted in complete conversion of the protein C precursor to the mature two-chain form. Amino-terminal sequencing of the cleavage products has indicated that the cleavage occurs in the correct location and that this site is preferentially recognized by the yeast endopeptidase within the context of the mammalian cell secretory pathway.  相似文献   

14.
P Novak  I K Dev 《Journal of bacteriology》1988,170(11):5067-5075
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.  相似文献   

15.
Joining peptide is the major alpha-amidated product of pro-ACTH/endorphin (PAE) in AtT-20 corticotropic tumor cells. To study intracellular joining peptide synthesis, affinity purified antibodies directed against gamma-MSH, joining peptide, and ACTH were used to immunoprecipitate extracts from biosynthetically labeled AtT-20 cells. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by tryptic peptide mapping on HPLC. In steady labeling experiments, radioactivity in amidated joining peptide (JP) increased roughly linearly with time, in the manner of a final product, whereas radioactivity associated with PAE (1-94)NH2 reached a constant value after 2-4 h, indicating that PAE(1-94)NH2 is an intermediate in the biosynthesis of JP. Radioactivity appeared in ACTH(1-39) well before JP, consistent with a cleavage order in which ACTH is cleaved from PAE(1-95) before JP sequences are cleaved from PAE(1-74). This conclusion was supported by tryptic peptide analyses of immunoprecipitates, which indicated that less than 5% of JP-related material is cleaved from PAE(1-74) before being cleaved from ACTH-related sequences. After a pulse label, radioactivity in PAE(1-94)NH2 reached a peak value after 1 h of chase and declined with a half-life of less than 1 h. Amidated JP increased to a constant level after 2 h of chase. Enough radiolabeled PAE(1-94)NH2 was detected to account for about half of the radioactivity found in amidated JP, indicating that about half of JP-related material is first cleaved from PAE(1-95) before being amidated. This result was corroborated using HPLC purification to determine both amidated and glycine-extended forms of JP.  相似文献   

16.
Cholecystokinin (CCK) is expressed in the central and peripheral nervous systems and functions as a neurotransmitter and neuroendocrine hormone. The in vivo forms of CCK include CCK-83, -58, -39, -33, -22, -12, and -8. Tissues in the periphery produce the larger forms of CCK, such as CCK-58, whereas the brain primarily produces CCK-8. The different biologically active forms of CCK observed in vivo may result from cell-specific differences in endoproteolytic cleavage during post-translational processing. Evidence suggests that cleavages of pro-CCK occur in a specific sequential order. To further delineate the progression of cleavages during pro-CCK maturation, mutagenesis was used to disrupt putative mono- and dibasic cleavage sites. AtT-20 cells transfected with wild-type rat prepro-CCK secret CCK-22 and -8. Mutagenesis of the cleavage sites of pro-CCK had profound effects on the products that were produced. Substitution of basic cleavage sites with nonbasic amino acids inhibits cleavage and leads to the secretion of pathway intermediates such as CCK-83, -33, and -12. These results suggest that CCK-58 is cleaved to both CCK-33 and -22. Furthermore, CCK-8 and -12 are likely derived from cleavage of CCK-33 but not CCK-22. Alanine substitution at the same site completely blocked production of amidated products, whereas serine substitution did not. The cleavages observed at nonbasic residues in this study may represent the activity of enzymes other than PC1 and carboxypeptidase E, such as the enzyme SKI-1. A model for the progression of pro-CCK processing in AtT-20 cells is proposed. The findings in this study further supports the hypothesis that pro-CCK undergoes parallel pathways of proteolytic cleavages.  相似文献   

17.
Most peptide hormones and neurotransmitters are synthesized as larger precursor proteins, which are post-translationally processed to mature bioactive products. An early event in prohormone maturation is endoproteolytic cleavage, occurring usually at pairs of basic amino acids (e.g. Lys-Arg). Since many of the characteristics of a prohormone endoprotease are unknown, distinguishing these enzymes from other cellular proteases in vitro has been difficult. In this report, the substrate specificity of a model prohormone processing system, the insulinoma cell line Rin m5F, was characterized in vivo to establish a set of criteria by which putative proinsulin endoproteases may be assessed. To determine the role of composition of the paired basic amino acid site in directing cleavage, a series of mutant prohormones containing altered cleavage sites was constructed and expressed in Rin m5F cells. Proopiomelanocortin (POMC) was used as a substrate since this prohormone was previously shown to be processed by these cells. To control for positional effects, all four permutations of lysine and arginine (Lys-Arg, Arg-Arg, Arg-Lys, and Lys-Lys) were introduced at both the efficiently processed cleavage site separating the ACTH and beta-lipotropin (beta-LPH) domains of POMC and at the inefficiently processed site in the beta-endorphin sequence near the COOH-terminus of the precursor. His-Arg and Met-Arg sites were also introduced at the ACTH/beta-LPH junction to assess the requirement for paired lysines and arginines. Identification of POMC-derived peptides demonstrated efficient processing of Lys-Arg and inefficient processing of Lys-Lys and Arg-Lys sites at both positions in the prohormone. The Arg-Arg sequence, however, was processed in a position-dependent manner, being efficiently cleaved between ACTH and beta-LPH but only about 50% processed within beta-endorphin. His-Arg was not cleaved in Rin m5F cells, although surprisingly Met-Arg was partially processed. These results indicate a strict preference of the insulinoma prohormone endoprotease(s) for paired basic amino acids ending in arginine, but that processing efficiency of some sequences may be modulated by location within the precursor molecule.  相似文献   

18.
Pro-opiomelanocortin (adrenocorticotropin/endorphin prohormone) is processed to yield active hormones by cleavages at paired basic amino acid residues. In this study, an enzyme that specifically cleaves at the paired basic residues of this prohormone has been purified from bovine pituitary intermediate lobe secretory vesicles, the intracellular processing site of proopiomelanocortin. This enzyme, named pro-opiomelanocortin converting enzyme, has been characterized as a glycoprotein of Mr approximately 70,000. It has an apparent isoelectric point between 3.5 and 4.0. The pH optimum of the pro-opiomelanocortin converting enzyme is between 4 and 5, but the enzyme is highly active at the intravesicular pH of 5.1-5.6. The enzyme specifically cleaved the Lys-Arg pairs of pro-opiomelanocortin to yield Mr = to 21,000-23,000 ACTH, beta-lipotropin, Mr 13,000 and 4,500 ACTH, beta-endorphin, and a Mr = 16,000 NH2-terminal glycopeptide, the products synthesized by the pituitary intermediate lobe in situ. NH2- and COOH-terminal analysis of the products indicated that the pro-opiomelanocortin converting enzyme cleaves the peptide bond either between the Lys and Arg or on the carboxyl side of the Arg at Lys-Arg pairs of pro-opiomelanocortin. The intracellular localization, pH optimum, and cleavage specificity of the enzyme suggest that it may function as a pro-opiomelanocortin processing enzyme in the pituitary intermediate lobe in vivo.  相似文献   

19.
Previous work demonstrated that human furin is a predominantly Golgi membrane-localized endoprotease that can efficiently process precursor proteins at paired basic residues (-Lys-Arg- or -Arg-Arg-) in transfected cells. Anion-exchange chromatography of culture supernatant from cells expressing a soluble truncated form of human furin resulted in a greatly enriched preparation of the endoprotease (approximately 70% pure as determined by protein staining). Enzymatic studies show that furin is a calcium-dependent (K0.5 = 200 microM) serine endoprotease which has greater than 50% of maximal activity between pH 6.0 and 8.5. The inhibitor sensitivity of furin suggests that it is similar to, yet distinct from, other calcium-dependent proteases. Evidence that furin may require a P4 Arg in fluorogenic peptide substrates suggested that this enzyme might cleave the protective antigen (PA) component of anthrax toxin at the sequence -Arg-Lys-Lys-Arg-. Indeed, PA was cleaved by purified furin at the proposed consensus site (-Arg-X-Lys/Arg-Arg decreases-) at a rate (8 mumol/min/mg total protein) 400-fold higher than that observed with synthetic peptides. In addition, the processing of mutant PA molecules with altered cleavage sites suggests that furin-catalyzed endoproteolysis minimally requires an -Arg-X-X-Arg- recognition sequence for efficient cleavage. Together, these results support the hypothesis that furin processes protein precursors containing this cleavage site motif in the exocytic pathway and in addition, raises the possibility that the enzyme also cleaves extracellular substrates, including PA.  相似文献   

20.
We isolated 7.4 mg of pure renin from 2 kg of rat kidneys using affinity chromatography on pepstatin-aminohexyl-Sepharose and an octapeptide renin inhibitor, H-77-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that renin consists of two polypeptide chains linked by a disulfide bond, one of Mr = 36,000 (heavy chain) and the other of Mr = 3,000 (light chain). The amino-terminal 10-amino acid sequences of the heavy and the light chains were identical to the sequences beginning at Ser72 and Asp355, respectively, of the amino acid sequence of preprorenin deduced from the renin cDNA sequence. Amino acid sequencing of the carboxyl-terminal peptide of the heavy chain, generated by digestion with lysyl endopeptidase, showed that the carboxyl-terminal residue of the heavy chain is Phe. Thus, the propeptide of prorenin is cleaved after Thr71, followed by removal of two amino acids, Arg353 and Asn354, the result being formation of the heavy and light chains. Thus, the site of cleavage of rat prorenin is after a nonbasic amino acid, in contrast to the cleavage of the propeptide after a pair of basic amino acids in mouse submaxillary renin, human renal renin, and many secretory proteins. Treatment of renin with neuraminidase or glycopeptidase F had no apparent effect on the charge heterogeneity of renin. Glycosylation probably does not contribute to charge heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号