首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acanthopagrus butcheri completes its entire life history within estuaries and coastal lakes of southern Australia, although adults occasionally move between estuaries via the sea. Consequently, it is expected that populations of A. butcheri in different estuaries will be genetically distinct, with the magnitude of genetic divergence increasing with geographic isolation. However, previous genetic studies of A. butcheri from southeast Australia yielded conflicting results; allozyme variation exhibited minimal spatial structuring (θ = 0.012), whereas mitochondrial DNA distinguished the majority of populations analyzed (θ = 0.263) and genetic divergence was positively correlated with geographic isolation. This discrepancy could reflect high male gene flow, which impacts nuclear but not mitochondrial markers. Here we estimated allele frequencies at five nuclear microsatellite loci across 11 southeast Australian populations (595 individuals). Overall structuring of microsatellite variation was weaker (θ = 0.088) than that observed for mitochondrial DNA, but was able to distinguish a greater number of populations and was positively correlated with geographic distance. Therefore, we reject high male gene flow and invoke a stepping-stone model of infrequent gene flow among estuaries for both sexes. Likewise, management of A. butcheri within the study range should be conducted at the scale of individual or geographically proximate estuaries for both sexes. The lack of allozyme structuring in southeast Australia reflects either the large variance in structuring expected among loci under neutral conditions and the low number of allozymes surveyed or a recent colonization of estuaries such that some but not all nuclear loci have approached migration-drift equilibrium.  相似文献   

2.
Ecological factors are important drivers of phenotypic divergence, which may lead to incipient speciation. A variety of habitats should be preserved to maintain evolutionary potential. We used the marsupial, the yellow-footed antechinus ( Antechinus flavipes ) as a model species for investigating phenotypic differentiation between animals inhabiting two habitat types in south-eastern Australia: flood-plain river red gum and box–ironbark forests. All tested phenotypic characteristics varied between years at the same sites and therefore were not useful for investigating morphological specialization that may lead to speciation. Males generally were significantly heavier when antechinus densities were lower, but exceptions were found, possibly related to food availability. Teat-number variation recently has been shown to be associated with habitat specialization and incipient speciation within Antechinus agilis . We investigated genetic differentiation associated with this trait in A. flavipes . Population genetic analyses of microsatellite genotypes and mitochondrial DNA haplotypes revealed that sympatric 12-, 13- and 14-teat females in Chiltern forest were part of one freely interbreeding population. Our parentage analyses found two cases where 13-teat mothers produced 12-teat daughters. This suggests either plasticity or paternal genetic influence on the offspring's teat-number phenotype. Laboratory matings may be required to resolve the extent to which teat number is heritable in A. flavipes .  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 303–314.  相似文献   

3.
An understanding of the genetic control of porcine female reproductive performance would offer the opportunity to utilize natural variation and improve selective breeding programs through marker-assisted selection. The Chinese Meishan is one of the most prolific pig breeds known, farrowing three to five more viable piglets per litter than the European Large White breed. This difference in prolificacy is attributed to the Meishan's superior prenatal survival levels. The present study utilized a three-generation cross in which the founder grandparental animals were purebred Meishan and Large White pigs in a scan for quantitative trait loci (QTL) on porcine chromosome 8 (SSC8) associated with reproductive performance. Reproductive traits, including number of corpora lutea (ovulation rate), teat number, litter size, and prenatal survival, were recorded for as many as 220 F2 females. Putative QTL for the related traits of litter size and prenatal survival were identified at the distal end of the long arm of SSC8. A physiological candidate gene, SPP1, was found to lie within the 95% confidence interval of these QTL. A suggestive QTL for teat number was revealed on the short arm of SSC8. The present study demonstrates, to our knowledge, the first independent confirmation of QTL for fecundity on SSC8, and these QTL regions provide a crucial starting point in the search for the causal genetic variants.  相似文献   

4.
Female reproductive performance traits in pigs have low heritabilities thus limiting improvement through traditional selective breeding programmes. However, there is substantial genetic variation found between pig breeds with the Chinese Meishan being one of the most prolific pig breeds known. In this study, three cohorts of Large White × Meishan F2 cross‐bred pigs were analysed to identify quantitative trait loci (QTL) with effects on reproductive traits, including ovulation rate, teat number, litter size, total born alive and prenatal survival. A total of 307 individuals were genotyped for 174 genetic markers across the genome. The genome‐wide analysis of the trait‐recorded F2 gilts in their first parity/litter revealed one QTL for teat number significant at the genome level and a total of 12 QTL, which are significant at the chromosome‐wide level, for: litter size (three QTL), total born alive (two QTL), ovulation rate (four QTL), prenatal survival (one QTL) and teat number (two QTL). Further support for eight of these QTL is provided by results from other studies. Four of these 12 QTL were mapped for the first time in this study: on SSC15 for ovulation rate and on SSC18 for teat number, ovulation rate and litter size.  相似文献   

5.
Galaxiella pusilla is a small, non-migratory freshwater fish, endemic to south-eastern Australia and considered nationally threatened. To assist in the conservation of the species, microsatellite markers were developed and used to characterize genetic variation in 20 geographically distinct populations across its range. Substantial genetic differentiation was found between an eastern (Victoria east of the Otway Ranges and Tasmania) and western (South Australia and Victoria west of, and including, the Otway Ranges) region. This major separation was also observed in data from a mitochondrial gene and supports a previously proposed split. Populations from the eastern region had overall lower genetic diversity for both the microsatellite and mtDNA markers. There was substantial genetic differentiation between populations within the two regions, suggesting that gene flow is limited by the isolation of freshwater streams. Genetic structure, consistent with an isolation-by-distance model, was also evident in both regions. Patterns of genetic variation in this threatened species are compared to those obtained for other taxa across the same region. The need to consider separate conservation strategies for the two sets of populations is emphasized.  相似文献   

6.
Sivasundar A  Hey J 《Genetics》2003,163(1):147-157
Caenorhabditis elegans has become one of the most widely used model research organisms, yet we have little information on evolutionary processes and recent evolutionary history of this widespread species. We examined patterns of variation at 20 microsatellite loci in a sample of 23 natural isolates of C. elegans from various parts of the world. One-half of the loci were monomorphic among all strains, and overall genetic variation at microsatellite loci was low, relative to most other species. Some population structure was detected, but there was no association between the genetic and geographic distances among different natural isolates. Thus, despite the nearly worldwide occurrence of C. elegans, little evidence was found for local adaptation in strains derived from different parts of the world. The low levels of genetic variation within and among populations suggest that recent colonization and population expansion might have occurred. However, the patterns of variation are not consistent with population expansion. A possible explanation for the observed patterns is the action of background selection to reduce polymorphism, coupled with ongoing gene flow among populations worldwide.  相似文献   

7.
Cerulean warblers (Dendroica cerulea) have experienced significant declines across their breeding range and presently exist in disjunct populations, largely because of extensive loss and fragmentation of their breeding and wintering habitat. Despite this overall decline, a recent north-eastern expansion of the breeding range has been proposed, and some researchers have suggested that the eastern Ontario population may be acting as a source population maintaining sink populations elsewhere. However, little is known about either the geographic distribution of genetic variation or dispersal in these birds. We assayed variation in five microsatellite loci and a 366 base-pair fragment of the mitochondrial control region among 154 cerulean warblers from five populations throughout the breeding range. No evidence of population genetic structure was found. Assignment tests suggested that six individuals were either inter-population migrants or descendants of recent migrants. The lack of population genetic structure is probably due to a combination of historical association and contemporary dispersal. Population decline does not appear to have reduced genetic variation yet. Overall results suggest that cerulean warblers from Ontario, Illinois, Arkansas and Tennessee should be considered a single genetic management unit for conservation.  相似文献   

8.
We examined the genetic structure of double-crested cormorants (Phalacrocorax auritus) across their range in the United States and Canada. Sequences of the mitochondrial control region were analyzed for 248 cormorants from 23 breeding sites. Variation was also examined at eight microsatellite loci for 409 cormorants from the same sites. The mitochondrial and microsatellite data provided strong evidence that the Alaskan subspecies (P. a. cincinnatus) is genetically divergent from other populations in North America (net sequence divergence = 5.85 %; ΦST for mitochondrial control region = 0.708; FST for microsatellite loci = 0.052). Historical records, contemporary population estimates, and field observations are consistent with recognition of the Alaskan subspecies as distinct and potentially of conservation interest. Our data also indicated the presence of another divergent lineage, associated with the southwestern portion of the species range, as evidenced by highly unique haplotypes sampled in southern California. In contrast, there was little support for recognition of subspecies within the conterminous U.S. and Canada. Rather than genetically distinct regions corresponding to the putative subspecies [P. a. albociliatus (Pacific), P. a. auritus (Interior and North Atlantic), and P. a. floridanus (Southeast)], we observed a distribution of genetic variation consistent with a pattern of isolation by distance. This pattern implies that genetic differences across the range are due to geographic distance, rather than discrete subspecific breaks. Although three of the four traditional subspecies were not genetically distinct, possible demographic separation, habitat differences, and documented declines at some colonies within the regions, suggests that the Pacific and possibly North Atlantic portions of the breeding range may warrant differential consideration from the Interior and Southeast breeding regions.  相似文献   

9.
Genetic variation of Kamchatka rainbow trout Parasalmo (O.) mykiss was examined using 10 microsatellite DNA loci, and phylogeographic comparison with other representatives of the species across the distribution range was performed. It was demonstrated that Kamchatka populations differed from other geographic groups of rainbow trout in a number of microsatellite loci. These populations also displayed distinct clustering and were characterized by lower genetic diversity. Analysis of a set of 26 different microsatellite loci (personal and literature data) demonstrated that most of the populations within the Kamchatka region were separated from one another, characterized by marked geographic differentiation, and affiliation to certain river basins. In Kamchatka rainbow trout, with high degree of probability, three geographic clusters (northwestern, southwestern, and eastern) were identified. In general, analysis of microsatellite DNA supported the data on low genetic diversity of the Kamchatka group Parasalmo (O.) mykiss, based on the variation estimates for a number of genes of nuclear and mitochondrial DNA, and allozyme loci.  相似文献   

10.
Aim Invasive species frequently exhibit high temporal and spatial variation in abundance. Although ecological aspects undoubtedly affect this variation, genetic factors may also play a part. The invasive unicolonial yellow crazy ant Anoplolepis gracilipes exhibits considerable variation in abundance throughout its extensive distribution in Australia’s Northern Territory, where it was first detected in the 1980s. First, we aimed to determine whether A. gracilipes variation in abundance was associated with behavioural and genetic differentiation of the population and to determine whether one or more introductions occurred. Second, we investigated whether the A. gracilipes population was genetically and behaviourally heterogeneous to determine whether population divergence has occurred since introduction. Location Tropical monsoonal savanna in Arnhem Land, Northern Territory, Australia. Methods Ant abundances were assessed at 13 sites throughout the study region. We used mitochondrial DNA sequences and microsatellite molecular markers to determine population genetic structure, which we correlated with abundance. Behavioural differentiation was assayed using aggression trials and analysed together with genetic data to investigate population divergence. Results Although we found considerable variation in abundance, we found no association between population structure and differences in abundance. Our analyses suggest that A. gracilipes ants in Arnhem Land resulted from a single introduction. The population is not homogeneous, however, as aggression scores varied over both genetic and geographic distance. We also found a positive relationship between genetic and geographic distance. Main conclusions The variation in abundance in the Arnhem Land population of A. gracilipes is clearly not owing to invasion by ants from different sources. The genetic and behavioural differentiation we observed is suggestive of incipient genetic and behavioural divergence, which may be expected over time when an invasive species enters in a new environment.  相似文献   

11.
Partial sequences from mitochondrial (mt) 12S and 16S rRNA genes were analyzed to characterize diversity among captive rhesus macaques (Macaca mulatta) originating from various geographic regions. Several nested clades, defined by closely related haplotypes, were identified, suggesting considerable genetic subdivision, probably relics from heterogeneous origins, founder effects, and genetic drift, followed by breeding isolation. The rhesus matrilineages from India differed discretely and markedly from Chinese matrilineages; approximately 90% of the genetic heterogeneity among the combined samples of Indian and Chinese rhesus macaques studied here was due to country of origin. In addition, mtDNA sequences from macaques of China were more diverse than those from rhesus macaques of India, an outcome consistent with China's greater subspecies diversity and with nuclear genotype distributions. Otherwise, the distribution of mtDNA variation within rhesus macaques of China, and especially within those of India, exhibited far less structure and did not conform to a simple isolation-by-distance model. As the demand for genetically heterogeneous and well-characterized rhesus macaques for biomedical-based research increases, mtDNA haplotypes can be useful for genetically defining, preserving maximal levels of genetic diversity within, and confirming the geographic origin of captive breeding groups of rhesus macaques.  相似文献   

12.
A diverse group of animals has adapted to caves and lost their eyes and pigmentation, but little is known about how these animals and their striking phenotypes have evolved. The teleost Astyanax mexicanus consists of an eyed epigean form (surface fish) and at least 29 different populations of eyeless hypogean forms (cavefish). Current alternative hypotheses suggest that adaptation to cave environments may have occurred either once or multiple times during the evolutionary history of this species. If the latter is true, the unique phenotypes of different cave-dwelling populations may result from convergence of form, and different genetic changes and developmental processes may have similar morphological consequences. Here we report an analysis of variation in the mitochondrial NADH dehydrogenase 2 (ND2) gene among different surface fish and cavefish populations. The results identify a minimum of two genetically distinctive cavefish lineages with similar eyeless phenotypes. The distinction between these divergent forms is supported by differences in the number of rib-bearing thoracic vertebrae in their axial skeletons. The geographic distribution of ND2 haplotypes is consistent with roles for multiple founder events and introgressive hybridization in the evolution of cave-related phenotypes. The existence of multiple genetic lineages makes A. mexicanus an excellent model to study convergence and the genes and developmental pathways involved in the evolution of the eye and pigment degeneration.  相似文献   

13.
Because of increasing litter size in Western pig breeds, additional teats are desirable to increase the capacity for nursing offspring. We applied genome‐wide SNP markers to detect QTL regions that affect teat number in a Duroc population. We phenotyped 1024 animals for total teat number. A total of 36 588 SNPs on autosomes were used in the analysis. The estimated heritability for teat number was 0.34 ± 0.05 on the basis of a genomic relationship matrix constructed from all SNP markers. Using a BayesC method, we identified a total of 18 QTL regions that affected teat number in Duroc pigs; 9 of the 18 regions were newly detected.  相似文献   

14.
Genetic variation of Kamchatka rainbow trout Parasalmo (O.) mykiss was examined using 10 microsatellite DNA loci, and phylogeographic comparison with other representatives of the species across the distribution range was performed. It was demonstrated that Kamchatka populations differed from other geographic groups of rainbow trout in a number of microsatellite loci. These populations also displayed distinct clustering and were characterized by lower genetic diversity. Analysis of a set of 26 different microsatellite loci (personal and literature data) demonstrated that most of the populations within the Kamchatka region were separated from one another, characterized by marked geographic differentiation, and affiliation to certain river basins. In Kamchatka rainbow trout, with high degree of probability, three geographic clusters (northwestern, southwestern, and eastern) were identified. In general, analysis of microsatellite DNA supported the data on low genetic diversity of the Kamchatka group Parasalmo (O.) mykiss, based on the variation estimates for a number of genes of nuclear and mitochondrial DNA, and allozyme loci.  相似文献   

15.
Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus.  相似文献   

16.
Molecular genetic analyses show that introduced populations undergoing biological invasions often bring together individuals from genetically disparate native-range source populations, which can elevate genotypic variation if these individuals interbreed. Differential admixture among multiple native-range sources explains mitochondrial haplotypic diversity within and differentiation among invasive populations of the lizard Anolis sagrei. Our examination of microsatellite variation supports the hypothesis that lizards from disparate native-range sources, identified using mtDNA haplotypes, form genetically admixed introduced populations. Furthermore, within-population genotypic diversity increases with the number of sources and among-population genotypic differentiation reflects disparity in their native-range sources. If adaptive genetic variation is similarly restructured, then the ability of invasive species to adapt to new conditions may be enhanced.  相似文献   

17.
《Biological Control》2013,67(3):150-158
Lysiphlebus testaceipes (Cress.) is an aphidiine parasitoid originally introduced to Europe as a biological control agent of citrus aphids in the Mediterranean. It has rapidly become widespread in coastal areas continuing gradually to expand inland. L. testaceipes exploited a large number of aphids in Europe, including new hosts and significantly changed the relative abundance of the native parasitoids. This behavior may reflect a broad oligophagy of the introduced parasitoid or it may require the evolution of host specialization that results in genetically differentiated subpopulations on different hosts. To address this issue we used the mitochondrial cytochrome oxidase subunit I and seven microsatellite loci to analyze the structure of genetic variation for L. testaceipes samples collected from 12 different aphid hosts across seven European countries, as well as some samples from Benin, Costa Rica, USA, Algeria and Libya for comparison. Only five COI haplotypes with moderate divergence were identified overall. There was no evidence for the association of haplotypes with different aphid hosts in the European samples, but there was geographic structuring in this variation. Haplotype diversity was highest in France, where L. testaceipes was introduced, but only a single haplotype was detected in areas of south-eastern Europe that were invaded subsequently. The analysis of microsatellite variation confirmed the lack of host-associated genetic structure, as well as differentiation between populations from south-western and south-eastern Europe. The parasitoid L. testaceipes in Europe is thus an opportunistic oligophagous species with a population structure shaped by the processes of introduction and expansion rather than by host exploitation.  相似文献   

18.
Experiments involving neonates should follow the same basic principles as most other experiments. They should be unbiased, be powerful, have a good range of applicability, not be excessively complex, and be statistically analyzable to show the range of uncertainty in the conclusions. However, investigation of growth and development in neonatal multiparous animals poses special problems associated with the choice of "experimental unit" and differences between litters: the "litter effect." Two main types of experiments are described, with recommendations regarding their design and statistical analysis: First, the "between litter design" is used when females or whole litters are assigned to a treatment group. In this case the litter, rather than the individuals within a litter, is the experimental unit and should be the unit for the statistical analysis. Measurements made on individual neonatal animals need to be combined within each litter. Counting each neonate as a separate observation may lead to incorrect conclusions. The number of observations for each outcome ("n") is based on the number of treated females or whole litters. Where litter sizes vary, it may be necessary to use a weighted statistical analysis because means based on more observations are more reliable than those based on a few observations. Second, the more powerful "within-litter design" is used when neonates can be individually assigned to treatment groups so that individuals within a litter can have different treatments. In this case, the individual neonate is the experimental unit, and "n" is based on the number of individual pups, not on the number of whole litters. However, variation in litter size means that it may be difficult to perform balanced experiments with equal numbers of animals in each treatment group within each litter. This increases the complexity of the statistical analysis. A numerical example using a general linear model analysis of variance is provided in the Appendix. The use of isogenic strains should be considered in neonatal research. These strains are like immortal clones of genetically identical individuals (i.e., they are uniform, stable, and repeatable), and their use should result in more powerful experiments. Inbred females mated to males of a different inbred strain will produce F1 hybrid offspring that will be uniform, vigorous, and genetically identical. Different strains may develop at different rates and respond differently to experimental treatments.  相似文献   

19.
The greater flamingo Phoenicopterus roseus is a long‐lived colonial waterbird species, characterized by a large range encompassing three continents, a very limited number of breeding sites, and high dispersal abilities. We investigated both the phylogeographic history and the contemporary extent of genetic differentiation between eight different Mediterranean breeding colonies of greater flamingos sampled between 1995 and 2009, using both mitochondrial DNA and microsatellite markers. We found no significant differences in allelic richness or private allelic richness in relation to colony size. Overall, no genetic population differentiation was detected using either mitochondrial or microsatellite markers. F‐statistics and Bayesian clustering methods did not support any significant genetic structure. Analysis of both mitochondrial DNA and microsatellites indicated that populations have undergone a bottleneck followed by rapid growth and expansion. The average time since expansion was estimated to be 696 421 yr (90% CI: 526 316–1 131 579 yr). We discuss our results in relation to both the possible historical events accounting for the present genetic structure and relevance to conservation and management of the species.  相似文献   

20.
The Puerto Rican crested toad (Peltophryne lemur) is currently composed of a single wild population on the south coast of Puerto Rico and two captive populations founded by animals from the northern and southern coasts. The main factors contributing to its decline are habitat loss, inundation of breeding ponds during storms, and impacts of invasive species. Recovery efforts have been extensive, involving captive breeding and reintroductions, habitat restoration, construction of breeding ponds, and public education. To guide future conservation efforts, genetic variation and differentiation were assessed for the two captive colonies and the remaining wild population using the mitochondrial control region and six novel microsatellite loci. Only two moderately divergent mitochondrial haplotypes were found, with one fixed in each of the southern and northern lineages. Moderate genetic variation exists for microsatellite loci in all three groups. The captive southern population has not diverged substantially from the wild population at microsatellite loci (F ST = 0.03), whereas there is little allelic overlap between the northern and southern lineages at five of six loci (F ST > 0.3). Despite this differentiation, they are no more divergent than many populations of other amphibian species. As the northern breeding colony may not remain viable due to its small size and inbred nature, it is recommended that a third breeding colony be established in which northern and southern individuals are combined. This will preserve any northern adaptive traits that may exist, and provide animals for release in the event that the pure northern lineage becomes extirpated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号