首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proton nuclear magnetic resonance spectrum of azurin from Alcaligenes denitrificans at pH 6.0 and 309 K is reported. Proton signals from all methionine and histidine residues (among them the copper ligands) have been assigned. The data have been used to study the pH behaviour of His35 and to establish the electron self-exchange rate of the protein. His35 appears to be protonated at pH less than 4.5, possibly after rupture of a salt bridge. No effects of this protonation on the tertiary structure around the copper site are observed, however, contrary to the case of Pseudomonas aeruginosa azurin. The electron self-exchange rate amounts to 4 x 10(5) M-1 S-1 at pH 6.7 and 297 K. The data support the conclusion that the electron self-exchange takes place by way of the hydrophobic surface patch around His117, and that His35 is not involved in this reaction. Oxidation of azurin increases the acidity of the freely titrating His32 and His83 by 0.07 and 0.25 pKa units, respectively. The data can be used to test the theory of electrostatic interactions in proteins. The optical extinction coefficient at 625 nm was experimentally determined and amounts to 4.8(+/- 0.1) x 10(3) M-1 cm-1.  相似文献   

2.
The electron self-exchange rate of azurin from Pseudomonas aeruginosa has been measured by proton NMR as a function of temperature under various conditions of pH, buffer and ionic strength. The rate does not appear very sensitive to variations in the latter parameters. Qualitative thermodynamic compensation is observed for the entropy and enthalpy of activation, with a compensation temperature of 309 +/- 7 K, and an average exchange rate of 1.3 X 10(6) M-1 s-1. The observed high entropy of activation contributes significantly to the high exchange rate. The data are analyzed by considering an encounter complex in which two azurin molecules associate along their hydrophobic patches. Copper-to-copper electron transfer over a distance of 1.5 nm in the complex is facilitated by the favourable disposition of the His-117 ligands.  相似文献   

3.
An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.  相似文献   

4.
The kinetics of the deuteronation of one of the copper ligand histidines of the reduced Type I blue-copper protein amicyanin from Thiobacillus versutus was studied as a function of temperature by 300- and 600- MHz 1H NMR. The NMR data were analyzed with the help of a three site exchange model. Deuteron exchange between the histidine ligand and the solution appears to be catalyzed by phosphate. After deuteronation the histidine can occur in two conformations. The electron self-exchange rate of amicyanin was determined as a function of temperature and ionic strength. At 298 K, pD = 8.6, I = 0.05 M, the ese rate amounts to 1.3 x 10(5) M-1 S-1. The activation parameters amount to delta H not equal to = (52 +/- 3) kJ/mol and delta S not equal to = (26 +/- 9) J/mol.K. The dependence of the ese rate on ionic strength is small. The deuteronated amicyanin appears to be redox-inactive. The experimental findings clearly distinguish amicyanin from other classes of blue-copper proteins like the azurins and the pseudo-azurins.  相似文献   

5.
15N relaxation measurements have been performed on the type Iota blue copper protein azurin from Pseudomonas aeruginosa. The relaxation times show that one loop (residues 103-108) and one turn (residues 74-77) display fast internal motions. The rest of the protein is rigid with an average order parameter S(2) of 0.85 +/- 0. 05. The copper binding site shows the same degree of rigidity even though is it composed of several loops and lies outside the beta-sheet sandwich. Substantial exchange broadening was found for a number of residues surrounding the side chain of His-35. The average exchange rate has been determined from NMR exchange spectroscopy experiments and is 45 +/- 6 s(-)(1) at 41 degrees C. The exchange broadening is caused by the protonation/deprotonation equilibrium of His-35. The NMR results indicate that the two structures of azurin observed by X-ray diffraction of crystals at pH 5.5 and 9.0 [Nar, H., Messerschmidt, A., Huber, R., Van de Kamp, M., Canters, G. W. (1991) J. Mol. Biol. 221, 765-772] are present in solution and that they interconvert slowly.  相似文献   

6.
Spectroscopic and electrochemical studies, incorporating electronic spectra, electron paramagnetic resonance (EPR) spectra, resonance Raman (RR) spectra, and measurements of the redox potential, have been carried out on the blue copper protein azurin, from Alcaligenes denitrificans. These data are correlated with the refined crystal structure of this azurin and with corresponding data for other blue copper proteins. The electronic spectrum, characterized by an intense (epsilon = 5100 M-1 cm-1) charge-transfer band at 619 nm, the EPR spectral parameters (g perpendicular = 2.059, g parallel of = 2.255, A parallel of = 60 X 10(-4) cm-1), and the resonance Raman spectrum are similar to those obtained from other azurins and from plastocyanins. Both the electronic spectrum and the EPR spectrum are unchanged over the pH range 4-10.5, but major changes occur above pH 12 and below pH 3.5. A small reversible change occurs at pH approximately 11.4. In the RR spectrum the Cu-S stretching mode is shown to contribute to all of the five principal RR peaks. Deuterium substitution produces shifts in at least seven of the peaks; these shifts may be attributable, at least in part, to the NH...S hydrogen bond to the copper-ligated Cys-112. Measurements of the redox potential, using spectroelectrochemical methods, over the temperature range 4.8-40.0 degrees C, give values for delta H0' and delta S0' of -55.6 kJ mol-1 and -97.0 J K-1 mol-1, respectively. The redox potential of A. denitrificans azurin at pH 7.0, Eo', is 276 mV. These data are interpreted in terms of a copper site, in azurin, comprising three strong bonds, in an approximately trigonal plane, from Cys-112, His-46, and His-117 and much longer axial approaches from Met-121 and the peptide carbonyl oxygen of Gly-45. Spectral differences within the azurin family and between azurin and plastocyanin are attributed to differences in the strengths of these axial interactions. Likewise, the distinctly lower Eo values for azurins, as compared with plastocyanins, are related to the more copper(II)-like site in azurin [with a weaker Cu-S(Met) interaction and a Cu-O interaction not found in plastocyanin]. On the other hand, the relative constancy of the EPR parameters between azurin and plastocyanin suggests they are not strongly influenced by weakly interacting axial groups.  相似文献   

7.
The X-ray crystal structure of recombinant wild-type azurin from Pseudomonas aeruginosa was determined by difference Fourier techniques using phases derived from the structure of the mutant His35Leu. Two data sets were collected from a single crystal of oxidized azurin soaked in mother liquor buffered at pH 5.5 and pH 9.0, respectively. Both data sets extend to 1.93 A resolution. The two pH forms were refined independently to crystallographic R-factors of 17.6% (pH 5.5) and 17.5% (pH 9.0). The conformational transition previously attributed to the protonation/deprotonation of residue His35 (pKa(red) = 7.3, pKa(ox) = 6.2), which lies in a crevice of the protein close to the copper binding site, involves a concomitant Pro36-Gly37 main-chain peptide bond flip. At the lower pH, the protonated imidazole N delta 1 of His35 forms a strong hydrogen bond with the carbonyl oxygen from Pro36, while at alkaline pH the deprotonated N delta 1 acts as an acceptor of a weak hydrogen bond from HN Gly37. The structure of the remainder of the azurin molecule, including the copper binding site, is not significantly affected by this transition.  相似文献   

8.
The site-specific chemical modification of horse heart cytochrome c at Lys-13 and -72 using 4-chloro-3,5-dinitrobenzoic acid (CDNB) increases the electron self-exchange rate of the protein. In the presence of 0.24 M cacodylate (pH* 7.0) the electron self-exchange rate constants, kex, measured by a 1H NMR saturation transfer method at 300 K, are 600, 6 X 10(3) and 6 X 10(4) M-1 X s-1 for native, CDNP-K13 and CDNP-K72 cytochromes c respectively. Repulsive electrostatic interactions, which inhibit cytochrome c electron self-exchange, are differentially affected by modification. Measurements of 1H NMR line broadening observed with partially oxidised samples of native cytochrome c show that ATP and the redox inert multivalent anion Co(CN)3-6 catalyse electron self-exchange. At saturation a limiting value of approximately 1.4 X 10(5) M-1 X s-1 is observed for both anions.  相似文献   

9.
A F Corin  R Bersohn  P E Cole 《Biochemistry》1983,22(8):2032-2038
A fluorescence quenching experiment confirms that in the redox reaction between cytochrome c-551 and azurin, protein complexing is negligible. Azurin-pH indicator T-jump experiments show that Pseudomonas aeruginosa (Ps.) azurin exhibits a slow time constant, tau, in its return to pH equilibrium but Alcaligenes faecalis (Alc.) azurin does not. The decrease of l/tau with increasing pH shows that the rate-determining process is a slow transformation of the imidazolium form of histidine-35 from a conformation where it cannot ionize to one in which it can. The fast relaxation time constant of the redox reaction varies little with pH, but the slow time constant increased by a factor of approximately 2.5 increasing pH between pH 5 and pH 8. The corresponding amplitudes, especially the slow one, vary with pH. On the basis of all the present evidence it is concluded that, while some differences of redox reactivity do occur on protonation, these differences are not major. In general, the two proteins cyt c-551 and azurin react with each other with rates only weakly dependent upon pH. A classical pH titration was carried out on the reduced and oxidized form of Ps. and Alc. azurin with the result that two protons were released between pH 6 and pH 8, in the former from His-35 and -83 and in the latter from His-83 and Ala-1.  相似文献   

10.
The six-coordinate monohaem ferricytochrome b-562 from Escherichia coli exhibits two haem-linked pH-dependent transitions detected by NMR and optical spectroscopy. Only one of these transitions, that of the Fe(III)-coordinated His-102, is detected by EPR and MCD; the ionisation of a haem propionate is not. Both ionisations are redox-state-dependent and the midpoint redox potential of the protein is markedly pH-dependent. Over the pH range 5.0 to 8.5 the potential drops from 260 mV to 110 mV and at least five single proton ionisations are responsible for this. In addition to the two spectroscopically identified ferricytochrome ionisations, there are at least three unidentified ionisations, two of which occur in the ferrous protein. From a consideration of the X-ray structure, together with NMR data, it seems probable that at least one of these ionisations involves an amino acid carboxylate. The X-ray structure also suggests that the relatively low pKa of His-102 is a result of its proximity to Arg-98. However, an appreciable interaction between these groups requires that the solution conformation differs slightly from the X-ray structure. The fast rate of electron self-exchange, over 4 X 10(6) M-1 X s-1 at 315 K and pH* 7, may be a reflection of the fact that, as shown by the X-ray structure, a large amount of the haem and axial histidine ligand are exposed at the molecular surface with an asymmetric distribution of charged groups surrounding them.  相似文献   

11.
The structure of a blue copper protein, cupredoxin, from the potent denitrifying bacterium Alcaligenes faecalis S-6, has been determined and refined against 2 A x-ray diffraction data. The agreement between observed and calculated structure factors is 0.159, and estimated errors in coordinates are 0.09-0.15 A. The protein folds in a beta sandwich similar to plastocyanin and azurin and includes features such as a "kink" and a "tyrosine loop" which have been noted previously for these proteins as well as immunoglobulins. The copper is bound by four ligands, in a distorted tetrahedral arrangement, with Cu-S gamma = 2.07 A (Cys-78), Cu-N delta 1 = 2.10 and 2.21 for His-40 and His-81, and Cu-S delta = 2.69 A (Met-86). Two of the ligands are further oriented by hydrogen bonds either to other side chains (Asn-9 to His-40), backbone atoms (NH...S) or a water molecule (to His-40). The methionine ligand has no extra constraints. The C-terminal loop containing three of the ligands is hydrogen-bonded to the strand containing His-40 by hydrogen bonds between the conserved residues Thr-79 and Asn-41. The pronounced dichroism of the crystal is a result of the orientation of the normal to the C beta-S gamma-Cu plane parallel to the crystallographic 6-fold axis.  相似文献   

12.
The electron transfer equilibrium and kinetics between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa have been studied. The equilibrium constant K = ([Cyt(III)] . [Az(I)])/([Cyt(II)] . [Az(II))]) = 0.5 at 25 degrees C is about seven times smaller than that observed between the cytochrome c551 and the titrations confirmed a 43-mV difference between the mid-point potentials of +266 mV and +309 mV for the Alcaligenes and Pseudomonas azurins respectively. The kinetics of the reaction between Alcaligenes azurin and Pseudomonas cytochrome c551 were investigated by the temperature-jump chemical relaxation method. Only a single relaxation mode was observed throughout the range of concentrations and temperatures examined. Thus, the slow relaxation time observed in the reaction between P. aeruginosa azurin and cytochrome c551 is not observed with the Alcaligenes azurin. The simplest mechanism that can therefore be ascribed to the investigated system is: [formula: see text]. This scheme is similar to that proposed earlier for the reaction between P. aeruginosa azurin and cytochrome c551 but does not involve the conformational transition proposed for azurin. The specific rates for the electron transfer are still fast: 1.8 x 10(6) M-1 . s-1 and 3.0 x 10(6) M-1 . s-1 respectively at 25 degrees C.  相似文献   

13.
Site-directed mutagenesis of the structural gene for azurin from Pseudomonas aeruginosa has been used to prepare azurins in which amino acid residues in two separate electron-transfer sites have been changed: His-35-Lys and Glu-91-Gln at one site and Phe-114-Ala at the other. The charge-transfer band and the EPR spectrum are the same as in the wild-type protein in the first two mutants, whereas in the Phe-114-Ala azurin, the optical band is shifted downwards by 7 nm and the copper hyperfine splitting is decreased by 4.10(-4)/cm. This protein also shows an increase of 20-40 mV in the reduction potential compared to the other azurins. The potentials of all four azurins decrease with increasing pH in phosphate but not in zwitterionic buffers with high ionic strength. The rate constant for electron exchange with cytochrome c551 is unchanged compared to the wild-type protein in the Phe-114-Ala azurin, but is increased in the other two mutant proteins. The results suggest that Glu-91 is not important for the interaction with cytochrome c551 and that His-35 plays no critical role in the electron transfer to the copper site.  相似文献   

14.
Chemical modification of spinach ribulosebisphosphate carboxylase/oxygenase by diethyl pyrocarbonate led to the conclusion that His-298 is an essential active-site residue (Igarashi, Y., McFadden, B. A., and El-Gul, T. (1985) Biochemistry 24, 3957-3962). From the pH dependence of inactivation, the pKa of His-298 was observed to be approximately 6.8, and it was suggested that this histidine might be the essential base that initiates catalysis (Paech, C. (1985) Biochemistry 24, 3194-3199). To explore further the possible function of His-298, we have used site-directed mutagenesis to replace the corresponding residue of the Rhodospirillum rubrum carboxylase (His-291) with alanine. Assays of extracts of Escherichia coli JM107, harboring either the wild-type or mutant gene in an expression vector, revealed that the mutant protein is approximately 40% as active catalytically as the normal carboxylase. After purification to near homogeneity by immunoaffinity chromatography, the mutant protein was partially characterized with respect to subunit structure, kinetic parameters, and interaction with a transition-state analogue. The purified mutant carboxylase had a kcat of 1.5 s-1 and a kcat/Km of 1.7 X 10(4) M-1 s-1 in contrast to values of 3.6 s-1 and 6 X 10(5) M-1 s-1 for the normal enzyme. The high level of enzyme activity exhibited by the Ala-291 mutant excludes His-291 in the R. rubrum carboxylase (and by inference His-298 in the spinach carboxylase) as a catalytically essential residue.  相似文献   

15.
Complete sequential 1H and 15N resonance assignments for the reduced Cu(I) form of the blue copper protein azurin (M(r) 14,000, 128 residues) from Pseudomonas aeruginosa have been obtained at pH 5.5 and 40 degrees C by using homo- and heteronuclear two-dimensional (2D) and three-dimensional (3D) nuclear magnetic resonance spectroscopic experiments. Combined analysis of a 3D homonuclear 1H Hartmann-Hahn nuclear Overhauser (3D 1H HOHAHA-NOESY) spectrum and a 3D heteronuclear 1H nuclear Overhauser 1H[15N] single-quantum coherence (3D 1H[15N] NOESY-HSQC) spectrum proved especially useful. The latter spectrum was recorded without irradiation of the water signal and provided for differential main chain amide (NH) exchange rates. NMR data were used to determine the secondary structure of azurin in solution. Comparison with the secondary structure of azurin obtained from X-ray analysis shows a virtually complete resemblance; the two beta-sheets and a 3(10)-alpha-3(10) helix are preserved at 40 degrees C, and most loops contain well-defined turns. Special findings are the unexpectedly slow exchange of the Asn-47 and Phe-114 NH's and the observation of His-46 and His-117 N epsilon 2H resonances. The implications of these observations for the assignment of azurin resonance Raman spectra, the rigidity of the blue copper site, and the electron transfer mechanism of azurin are discussed.  相似文献   

16.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

17.
The interaction of water molecules with copper in wild-type azurin and different site-directed mutants of the coordinated residues is studied by nuclear magnetic relaxation dispersion. Different degrees of solvent accessibility are found. The low relaxivity of wild-type azurin agrees with a solvent-protected copper site in solution, the closest water being found at a distance of more than 5?Å from the copper. This low relaxivity contrasts with the relatively large relaxivity of the His46Gly and His117Gly azurin mutants, which shows clear evidence of copper-coordinated water. The data on the latter mutants are best analyzed in terms of one and two water molecules coordinated to the copper in His46Gly and His117Gly, respectively. The Met121His azurin mutant shows an intermediate behavior. The data are analyzed in terms of an increased solvent accessibility with respect to the wild-type azurin, resulting in semi-coordination of water at low pH. These different modes of coordination lead to different geometries, ranging from the trigonal type 1 site of wild-type azurin to the tetragonal type 2 copper sites of the His117Gly and His46Gly azurin mutants through a so-called type 1.5 site of the Met121His mutant. A correlation is found between the relaxation time (τs) of the unpaired electron of copper(II) and the geometry of the metal site: as the tetragonal character decreases the relaxation becomes significantly faster. τs values of ≤1?ns are found for the tetrahedrally distorted type 1 and type 1.5 sites and of 5–15?ns for the tetragonal type 2 sites.  相似文献   

18.
P Rosen  I Pecht 《Biochemistry》1976,15(4):775-786
The redox reaction between cytochrome c (Cyt c) (P-551) and the blue copper protein azurin, both from Pseudomonas aeruginosa, was studied using the temperature-jump technique. Two relaxation times were observed in a mechanism assumed to involve three equilibria. The fast relaxation time (0.4 less than tau less than 8 ms) was ascribed to the electron exchange step. The slow relaxation time (tau congruent to 37 ms) was assigned to a conformational equilibrium of the reduced azurin that was coupled through the electron exchange step to a faster conformational equilibrium of the oxidized Cyt c (P551). But because the Cyt c (P551) isomerization, being very rapid, was uncoupled from the two slower equilibria, and was assumed to involve no spectral change, the amplitude of its relaxation time (tau congruent to 0.1 ms) would be zero. At 25 degrees C and pH 7.0 the rate constants for the oxidation and reduction of Cyt c (P551) by azurin were 6.1 X 10(6) and 7.8 X 10(6) M-1 s-1, respectively; for the formation and disappearance of the reactive conformational isomer of azurin they were 12 and 17 s-1, respectively. The rates for the Cyt c (P551) isomerization could only be estimated at approximately 10(4) s-1. The thermodynamic parameters of each reaction step were evaluated from the amplitudes of the relaxations and from Eyring plots of the rate constants. Measurements of the overall equilibrium constant showed it to be temperature independent (5-35 degrees C), i.e. deltaHtot = 0. This zero enthalpy change was found to be compatible with the enthalpies calculated for the individual steps. In the electron exchange equilibrium, the values of the activation enthalpies were two to three times higher than the values published for various low molecular weight reagents in their electron exchange with copper proteins, yet the rate of exchange between Cyt c (P551) and azurin was some hundreds of times faster. This was explained in terms of the measured positive or zero entropies of activation that could result from a high level of specificity between the proteins particularly in areas of complementary charges. The mechanism of electron transfer was considered as essentially an outer sphere reaction, of which the rate could be approximated by the Marcus theory.  相似文献   

19.
Hyperfine interactions (1H and 14N) with the paramagnetic Cu(II)-site obtained from frozen solutions of human and bovine erythrocyte superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) as well as from their derivatives produced by anion binding (N3-, CN-) and by depletion of the Zn(II) site were studied using electron nuclear double resonance (ENDOR) spectroscopy at about 15 K. Both interactions were found to be identical in human and bovine erythrocyte superoxide dismutase. In all compounds, an anisotropic, exchangeable 1H interaction with a nearly constant coupling value (approximately 3 MHz along g perpendicular ) was observed which is due to either histidine NH- or water protons. Other proton interactions were tentatively assigned to H beta 1 of His-44, H delta 2 of His-46 and to H beta 2 of His-44. Depletion of the Zn(II) site did not alter appreciably the pattern of the proton interactions. The 14N couplings of the native specimen indicated equivalent coordination, whereas Zn(II) depletion and CN- addition were found to produce either some or drastic inequivalences, respectively. For N3- addition to either the native or the Zn(II)-depleted sample only minor effects on the respective 14N coupling pattern were observed.  相似文献   

20.
The redox reaction between cytochrome c-551 and its oxidase from the respiratory chain of pseudomonas aeruginosa was studied by rapid-mixing techniques at both pH7 and 9.1. The electron transfer in the direction of cytochrome c-551 reduction, starting with the oxidase in the reduced and CO-bound form, is monophasic, and the governing bimolecular rate constants are 1.3(+/- 0.2) x 10(7) M-1 . s-1 at pH 9.1 and 4 (+/- 1) x 10(6) M-1 . s-1 at pH 7.0. In the opposite direction, i.e. mixing the oxidized oxidase with the reduced cytochrome c-551 in the absence of O2, both a lower absorbance change and a more complex kinetic pattern were observed. With oxidized azurin instead of oxidized cytochrome c-551 the oxidation of the c haem in the CO-bound oxidase is also monophasic, and the second-order rate constant is 2 (+/- 0.7) x 10(6) M-1 . s-1 at pH 9.1. The redox potential of the c haem in the oxidase, as obtained from kinetic titrations of the completely oxidized enzyme with reduced azurin as the variable substrate, is 288 mV at pH 7.0 and 255 mV at pH 9.1. This is in contrast with the very high affinity observed in similar titrations performed with both oxidized azurin and oxidized cytochrome c-551 starting from the CO derivative of the reduced oxidase. It is concluded that: (i) azurin and cytochrome c-551 are not equally efficient in vitro as reducing substrates of the oxidase in the respiratory chain of Pseudomonas aeruginosa; (ii) CO ligation to the d1 haem in the oxidase induces a large decrease (at least 80 mV) in the redox potential of the c-haem moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号