首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoskeletal intermediate filaments were studied in muscular dysgenesis (mdg) and tetrodotoxin-treated inactive mouse embryo muscle cultures during myofibrillogenesis. Both muscular dysgenesis and tetrodotoxin-treated muscles are characterized in vitro by a total lack of contractile activity and an abnormal development of myofibrils. We studied the organization of the microtubule and intermediate filament networks with immunofluorescence, using anti-tubulin, anti-vimentin, and anti-desmin antibodies during normal and mdg/mdg myogenesis in vitro. Mdg/mdg myotubes present a heterogeneous microtubule network with scattered areas of decreased microtubule density. At the myoblast stage, cells expressed both vimentin and desmin. After fusion only desmin expression is revealed. In mutant myotubes the desmin network remains in a diffuse position and does not reorganize itself transversely, as it does during normal myogenesis. The absence of a mature organization of the desmin network in mdg/mdg myotubes is accompanied by a lack of organization of myofibrils. The role of muscle activity in the organization of myofibrils and desmin filaments was tested in two ways: (i) mdg/mdg myotubes were rendered active by coculturing with normal spinal cord cells, and (ii) normal myotubes were treated with tetrodotoxin (TTX) to suppress contractions. Mdg/mdg innervated myotubes showed cross-striated myofibrils, whereas desmin filaments remained diffuse. TTX-treated myotubes possessed disorganized myofibrils and a very unusual pattern of distribution of desmin: intensively stained desmin aggregates were superimposed upon the diffuse network. We conclude, on the basis of these results, that myofibrillar organization does not directly involve intermediate filaments but does need contractile activity.  相似文献   

2.
The cocarcinogen 12-O-tetradecanoyl-phorbol-13-acetate (TPA) has a prompt and selective effect on striated myofibrils in well-formed, multinucleated myotubes. The myofibrillar apparatus is totally disrupted and largely degraded after 3 days in TPA. Fluorescent-tagged antibodies to muscle-specific light meromyosin and electron microscopy document this catabolic effect of TPA. This selective degradation of fully assembled striated myofibrils is readily reversible. This reassembly of myofibrils requires de novo protein synthesis. The TPA-treated myotubes are unusually rich in autophagosomes, organelles rarely observed in normal myotubes. TPA has no discernable effect on the morphology of the subsarcolemmal microfilaments, mitochondria, microtubules, or sarcoplasmic reticulum (SR). The programmed disappearance of the fibroblast-type, intermediate 10-nm filaments (FIF) that occurs as normal myotubes mature is not altered by TPA. However, the TPA-treated myotubes depleted of myofibrils are filled with an extensive meshwork of the muscle-type intermediate 10-nm filaments (MIF). The drug has no obvious effect on the constitutive contractile proteins comprising the submembranous microfilaments, or the FIF in presumptive myoblasts or fibroblasts, nor does it affect the motility associated with these replicating cells. The striking increase in total calcium content which occurs as normal myotubes mature is absent in myotubes treated with TPA.  相似文献   

3.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

4.
The distribution of the intermediate filament proteins vimentin and desmin in developing and mature myotubes in vivo was studied by single and double immunoelectron microscopic labeling of ultrathin frozen sections of iliotibialis muscle in 7-21-d-old chick embryos, and neonatal and 1-d-old postnatal chicks. This work is an extension of our previous immunofluorescence studies of the same system (Tokuyasu, K. T., P. A. Maher and S. J. Singer, 1984, J. Cell Biol., 98:1961-1972). In immature myotubes of 7-11-d embryos, significant labeling for desmin and vimentin was found only in intermediate filaments, and these proteins coexisted in the same individual filaments. Each of the two proteins was present in irregular clusters along the entire length of a filament. No exclusively vimentin- or desmin-containing filaments were observed at this stage. In the early myotubes, the intermediate filaments were essentially all longitudinally oriented, even when they contained three times as much desmin as vimentin. No special relationship was recognized between the dispositions of the filaments and the organization of the myofibrils. Occasionally, several myofibrils were already aligned in lateral registry at this early stage, but labeling for desmin and vimentin was largely absent at the level of the Z bands. Instead, the Z bands appeared to be covered by elements of the sarcoplasmic reticulum. The confinement of intermediate filaments to the level of the Z bands occurred in the myotubes of later embryos after the extensive lateral registry of the Z bands. Thus, intermediate filaments are unlikely to play a primary role in producing the lateral registration of myofibrils during myogenesis, but may be important in determining the polarization of the early myotube and the alignment of its organelles. Throughout the development of myotubes, desmin and vimentin remained in the form of intermediate filaments, although the number of filaments per unit volume of myotube appeared to be reduced as myofibrils increased in number in maturing myotubes. This observation indicated that the transverse orientation of intermediate filaments in mature myotubes does not result from the de novo polymerization of subunits from Z band to Z band, but a continuous shifting of the positions and directions of intact filaments.  相似文献   

5.
The distribution of intermediate filament (IF) subunits during maturation of skeletal myotubes in vitro was examined by immunofluorescence, using antibodies against two different types of chick IF subunits: (a) 58-kdalton subunits of fibroblasts (anti-58K), and (b) 55-kdalton subunits of smooth muscle (anti-55K). Anti-58K bound to a filament network in replicating presumptive myoblasts and fibroblasts, as well as in immature myotubes. The distribution in immature myotubes was in longitudinal filaments throughout the cytoplasm. With maturation, staining of myotubes by anti-58K diminished and eventually disappeared. Anti-55K selectively stained myotubes, and the fluorescence localization underwent a drastic change in distribution with maturation--from dense, longitudinal filaments in immature myotubes to a cross-striated distribution in mature myotubes that was associated with the I--Z region of myofibrils. However, the emergence of a cross-striated anti-55K pattern did not coincide temperally with the emergence of striated myofibrils, but occurred over a period of days thereafter.  相似文献   

6.
Co-localization of microtubule (MT) and muscle myosin (MHC) myofibril immunofluoresoonoe in developing myotubes of chicken skeletal muscle cultures was observed by using double staining of tubulin and MHC indirect immunofluorescence.120-tetradecanoyl-phorbol-12-acetate (TPA) selectively and reversibly blocks myofibrillogenesis and alters the morphology of myotubes in to myosacs where MTs are present in radiating pattern.When the arrested myogenic cells recover and start myofibrillogenesis after released from TPA,prior to the emergence of myofibrils,the pre-ecisting MTs become bipolarly aligned coincidently with the tubular restoration of cell shape.Single nascent myofibrils overlapping with MTs extend into the base of growth tips where MTs go farther to the end of the tips.That MT might act as scaffold in guiding the bipolar elongation of the growing myofibrils was suggested.Taxol and colcemid disturbed MT polymerization and disposition,and interfered with the normal spatial assembly of myofibrils in developing myotubes.  相似文献   

7.
《The Journal of cell biology》1990,111(5):1885-1894
Myofiber growth and myofibril assembly at the myotendinous junction (MTJ) of stretch-hypertrophied rabbit skeletal muscle was studied by in situ hybridization, immunofluorescence, and electron microscopy. In situ hybridization identified higher levels of myosin heavy chain (MHC) mRNA at the MTJ of fibers stretched for 4 d. Electron microscopy at the MTJ of these lengthening fibers revealed a large cytoplasmic space devoid of myofibrils, but containing polysomes, sarcoplasmic reticulum and T-membranes, mitochondria, Golgi complexes, and nascent filament assemblies. Tallies from electron micrographs indicate that myofibril assembly in stretched fibers followed a set sequence of events. (a) In stretched fiber ends almost the entire sarcolemmal membrane was electron dense but only a portion had attached myofibrils. Vinculin, detected by immunofluorescence, was greatly increased at the MTJ membrane of stretched muscles. (b) Thin filaments were anchored to the sarcolemma at the electron dense sites. (c) Thick filaments associated with these thin filaments in an unregistered manner. (d) Z-bodies splice into thin filaments and subsequently thin and thick filaments fall into sarcomeric register. Thus, the MTJ is a site of mRNA accumulation which sets up regional protein synthesis and myofibril assembly. Stretched muscles also lengthen by the addition of myotubes at their ends. After 6 d of stretch these myotubes make up the majority of fibers at the muscle ends. Essentially all these myotubes repeat the developmental program of primary myotubes and express slow MHC. MHC mRNA distribution in myotubes is disorganized as is the distribution of their myofibrils.  相似文献   

8.
During chicken skeletal myogenesis in vitro, the actin-binding protein filamin is present at first in association with actin filament bundles both in myoblasts and in myotubes early after fusion. Later in mature myotubes it is found in association with myofibril Z disks. These two associations of filamin are separated by a period of several days, during which the protein is absent from the cytoplasm of differentiating myotubes (Gomer, R., and E. Lazarides, 1981, Cell, 23:524-532). To characterize the two classes of filamin polypeptides we have compared, by two-dimensional peptide mapping, 125I-labeled filamin immunoprecipitated from myoblasts and fibroblasts to filamin immunoprecipitated from mature myotubes and adult skeletal myofibrils. Myoblast filamin is highly homologous to fibroblast and purified chicken gizzard filamins. Mature myotube and adult myofibril filamins are highly homologous but exhibit extensive peptide differences with respect to the other three classes of filamin. Comparison of peptide maps from immunoprecipitated 35S-methionine-labeled filamins also shows that fibroblast and myoblast filamins are highly homologous but show substantial peptide differences with respect to mature myotube filamin. Filamins from both mature myotubes and skeletal myofibrils exhibit a slightly higher electrophoretic mobility than gizzard, fibroblast, and myoblast filamins. Short pulse-labeling studies show that mature myotube filamin is synthesized as a lower molecular weight variant and is not derived from a higher molecular weight precursor. These results suggest that myoblast and mature myotube filamins are distinct gene products and that during skeletal myogenesis in vitro one class of filamin polypeptides is replaced by a new class of filamin polypeptides, and that the latter is maintained into adulthood.  相似文献   

9.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.  相似文献   

10.
The actin filaments of myofibrils are highly organized; they are of a uniform length and polarity and are situated in the sarcomere in an aligned array. We hypothesized that the barbed-end actin-binding protein, CapZ, directs the process of actin filament assembly during myofibrillogenesis. We tested this hypothesis by inhibiting the actin- binding activity of CapZ in developing myotubes in culture using two different methods. First, injection of a monoclonal antibody that prevents the interaction of CapZ and actin disrupts the non-striated bundles of actin filaments formed during the early stages of myofibril formation in skeletal myotubes in culture. The antibody, when injected at concentrations lower than that required for disrupting the actin filaments, binds at nascent Z-disks. Since the interaction of CapZ and the monoclonal antibody are mutually exclusive, this result indicates that CapZ binds nascent Z-disks independent of an interaction with actin filaments. In a second approach, expression in myotubes of a mutant form of CapZ that does not bind actin results in a delay in the appearance of actin in a striated pattern in myofibrils. The organization of alpha-actinin at Z-disks also is delayed, but the organization of titin and myosin in sarcomeres is not significantly altered. We conclude that the interaction of CapZ and actin is important for the organization of actin filaments of the sarcomere.  相似文献   

11.
《The Journal of cell biology》1984,98(6):1961-1972
Antibodies against chicken erythrocyte vimentin and gizzard desmin were affinity purified and then cross-absorbed with the heterologous antigen. They were used to study the in vivo distributions of these proteins in developing and mature myotubes by immunofluorescence microscopy of 0.5-2-micron frozen sections of iliotibialis muscle in 7- 21-day chick embryos, neonatal and 1-d postnatal chicks, and adult chickens. The distributions of vimentin and desmin were coincidental throughout the development of myotubes, but the concentration of vimentin was gradually reduced as the myotubes matured and became largely undetectable at the time of hatching. The process of confining these proteins to the level of Z line from the initial uniform distribution occurred subsequent to the process of bringing myofibrils into lateral registry: in-register lateral association of several myofibrils was occasionally seen as early as in 7-11-d embryos, whereas the cross-striated immunofluorescence pattern of desmin and vimentin was only vaguely discerned in myotubes of 17-d embryos, just 4 d before hatching. In some myotubes of 21-d embryos, myofibrils were in lateral registry as precisely as in adult myofibers but desmin was still widely distributed around Z line in an irregular manner. Nevertheless, in many other myotubes of prenatal or neonatal chicks, desmin became confined to the level of Z line in a manner similar to that seen in adult myofibers, thus essentially completing its redistribution to the confined state of adult myofibers in coincidence with the time of hatching. In extracts from iliotibialis and posterior latissimus dorsi muscles of adult chickens, we detected a hitherto unidentified protein that was very similar to vimentin in molecular weight but did not react with our antivimentin antibody. We discuss the possibility that this protein was confused with vimentin in the past.  相似文献   

12.
Myosin mRNA distribution among subcellular compartments of anterior tibialis muscles in rabbit is monitored by in situ hybridization. A high density of mRNA was widely distributed throughout myotubes from 29-day fetal muscle and from regenerating adult muscle. All cytoplasmic spaces contained mRNA except where scattered myofibrils and centrally located nuclei were found. In fibers from 22-week-old rabbits, myosin mRNA was concentrated under the sarcolemma and excluded from the consolidated myofibrils and peripheral nuclei. The dispersal of mRNA through the cytoplasm in myotubes suggests that translation of myosin is widespread and that rapid myofibril assembly can occur throughout the fiber.  相似文献   

13.
We address the controversy of whether mature myofibrils can form in the presence of taxol, a microtubule-stabilizing compound. Previous electron microscopic studies reported the absence of actin filaments and Z-bands in taxol-treated myocytes [Antin et al., 1981: J Cell Biol 90:300-308; Toyoma et al., 1982: Proc Natl Acad Sci USA 79:6556-6560]. Quail skeletal myoblasts were isolated from 10-day-old embryos and grown in the presence or absence of taxol. Taxol inhibited the formation of multinucleated elongated myotubes. Myocytes cultured in the continual presence of taxol progressed from rounded to stellate shapes. Groups of myocytes that were clustered together after the isolation procedure fused in the presence of taxol but did not form elongated myotubes. Actin filaments and actin-binding proteins were detected with several different fluorescent probes in all myofibrils that formed in the presence of taxol. The Z-bands contained both alpha-actinin and titin, and the typical arrays of A-Bands were always associated with actin filaments in the myofibrils. Myofibril formation was followed by fixing cells each day in culture and staining with probes for actin, muscle-specific alpha-actinin, myosin II, nebulin, troponin, tropomyosin, and non-muscle myosin II. Small linear aggregates of alpha-actinin or Z-bodies, premyofibrils, were detected at the edges of the myocytes and in the arms of the taxol-treated cells and were always associated with actin filaments. Non-muscle myosin II was detected at the edges of the taxol-treated cells. Removal of the taxol drug led to the cells assuming a normal compact elongated shape. During the recovery process, additional myofibrils formed at the spreading edges of these elongated and thicker myotubes. Staining of these taxol-recovering cells with specific fluorescent reagents reveals three different classes of actin fibers. These results are consistent with a model of myofibrillogenesis that involves the transition of premyofibrils to mature myofibrils.  相似文献   

14.
Differentiation of myoblasts is accelerated in culture in a magnetic field   总被引:1,自引:0,他引:1  
Summary We developed a new cell stimulation method in which magnetic microparticles (MPs) were introduced into the cytoplasm of cultured myoblasts and the cells were cultured in a magnetic field. The differentiation of myoblasts was examined from the viewpoint of their morphology and myogenin production. After exposure to the magnetic field, the cells containing MPs became larger and were elongated along the axis of the magnetic poles. Myogenin, a muscle-specific regulatory factor involved in controlling myogenesis, was formed earlier, and myotubes were seen earlier and more frequently in this group of myoblasts than in the other groups (cells alone without magnetic field, cells containing MPs but without magnetic field, and cells alone with magnetic field). Moreover, we succeeded in differentiation of early muscle cells with striated myofibrils in culture at 0.05 T. The precisely quantitative and stable stimulus induced by a magnetic field developed in the present study offers a new approach to elucidate the entire process of myoblast differentiation into myotubes.  相似文献   

15.
This ultrastructural study on the localization of Ca+2 in developing skeletal muscle indicates that the formation of calcium-accumulating components begins during embryonic development. Both oxalate and pyroantimonate techniques are used to localize Ca+2 in distinct cellular components of chick pectoral and sartorius muscles. Two major sites for Ca+2 accumulation are present in ultrathin sections of embryonic and post-embryonic muscles: the terminal cisternae of the sarcoplasmic reticulum and specific lines in the I-bands. Calcium oxalate-accumulating vesicles are present in the smallest recognizable myotubes at the twelfth day of incubation, but calcium-accumulating components are not seen at myofibrillar I-band sites until the fourteenth to seventeenth days of incubation. The fact that myofibrils first form and later in development accumulate a Ca+2-binding component suggests that this Ca+2-binding component is not necessary for the formation of myofibrils, but is added to myofibrils before hatching to serve a probable regulatory role in contraction.  相似文献   

16.
During the initial phase of myofibrillogenesis in developing muscle cells, the majority of thin filaments lie parallel to, and exhibit correct polarity and spatial position with thick filaments, as in mature myofibrils. Since myosin is known to function as an accelerator of actin polymerization in vitro, it has been postulated that myosin-actin interaction is important in the initial phase of myofibrillogenesis. To clarify further the role of actin-myosin interaction in myofibril formation during development, BDM (2,3-butanedione 2-monoxime), an inhibitor of myosin ATPase, was applied to primary cultures of skeletal muscle to inhibit myosin activity during myofibrillogenesis, and myofibril formation was examined. When 10 mM BDM was added to the myotubes just after fusion and the cultures were maintained for a further 4 days, cross-striated myofibrils were scarcely observed by fluorescence microscopy when examined by staining with antibodies to actin, myosin, troponin and !-actinin, whereas in the control myotubes not exposed to BDM, typical sarcomeric structures were detected. Electron microscopy revealed a disorganized arrangement of myofilaments and incomplete sarcomeric structures in the BDM-treated myotubes. Thus, formation of cross-striated myofibrils was remarkably suppressed in the BDM-treated myotubes. When the myotubes cultured in BDM-containing media were transferred to control media, sarcomeric structures were formed in 2-3 days, suggesting that the inhibitory effect of BDM on myotubes is reversible. These results suggest that actin-myosin interaction plays a critical role in the early process of myofibrillogenesis.  相似文献   

17.
The effect of colchicine on myogenesis in vivo has been studied in the regenerating tadpole tail of the frog, Rana pipiens, and in the abdominal molting muscles of a blood-sucking bug, Rhodnius prolixus Stål. Colchicine is shown to disrupt microtubules in the differentiating muscle cells of both these organisms. The disruption of microtubules is correlated with a loss of longitudinal anisometry in the myoblasts and myotubes of the regeneration blastema in the tadpole tail. Before colchicine treatment, the myotubes contain longitudinally oriented myofibrils. After colchicine treatment, rounded, multinucleate myosacs containing randomly oriented myofibrils are present. It is suggested that the primary function of microtubules in myogenesis in the Rana pipiens tadpole is the maintenance of cell shape. The abdominal molting muscles of Rhodnius undergo repeated phases of differentiation and dedifferentiation of the sarcoplasm. However, the longitudinal anisometry of the muscle fibers is maintained in all phases by the attachments of the ends of the fibers to the exoskeleton, and microtubule disruption does not alter cell shape. The orientation of the developing myofibrils is also unaltered, indicating that the microtubules do not directly align or support the myofibrils in this system.  相似文献   

18.
Differential response of stress fibers and myofibrils to gelsolin   总被引:6,自引:0,他引:6  
The actin-severing activity of human platelet gelsolin was analyzed on embryonic skeletal and cardiac myofibrils, and on stress fibers in non-muscle cells. These subcellular structures, although in all three cell types composed of contractile proteins arranged in sarcomeric units, were found to respond differently to gelsolin. The myofibrils in permeabilized myotubes or cardiac cells, as well as in living, microinjected muscle cells proved resistant to a wide concentration range of gelsolin. The same was found for the "mini-sarcomeres" which are seen in developing muscle cells. In contrast, stress fibers in microinjected fibroblasts or epithelial cells, as well as in permeabilized cells, were broken down rapidly by the platelet gelsolin. We conclude from these results that the mini-sarcomeres in embryonic myotubes and cardiac myocytes are not identical with stress fibers.  相似文献   

19.
This study reports the first development of a fluorescently labeled filamin. Smooth muscle filamin was labeled with fluorescent dyes in order to study its interaction with stress fibers and myofibrils, both in living cells and in permeabilized cells. The labeled filamin bound to the Z bands of isolated cross-striated myofibrils and to the Z bands and intercalated discs in both permeabilized embryonic cardiac myocytes and in frozen sections of adult rat ventricle. In permeabilized embryonic chick myotubes, filamin bound to early myotubes but was absent at later stages. In living embryonic chick myotubes, the fluorescently labeled filamin was incorporated into the Z bands of myofibrils during early and late stages of development but was absent during an intermediate stage. In living cardiac myocytes, filamin-IAR was incorporated into nascent as well as fully formed sarcomeres throughout development. In permeabilized nonmuscle cells, labeled filamin bound to attachment plaques and foci of polygonal networks and to the dense bodies in stress fibers. The periodic bands of filamin in stress fibers had a longer spacing in fibroblasts than in epithelial cells. When injected into living cells, filamin was readily incorporated into stress fibers in a striated pattern. The fluorescent filamin bands were broader in injected cells, however, than they were in permeabilized cells. We have interpreted these results from living and permeabilized cells to mean that native filamin is distributed along the full length of the actin filaments in the stress fibers, with a higher concentration present in the dense bodies. A sarcomeric model is presented indicating the position of filamin with respect to other proteins in the stress fiber.  相似文献   

20.
Fluorescently labeled alpha-actinin, isolated from chicken gizzards, breast muscle, or calf brains, was microinjected into cultured embryonic myotubes and cardiac myocytes where it was incorporated into the Z-bands of myofibrils. The localization in injected, living cells was confirmed by reacting permeabilized myotubes and cardiac myocytes with fluorescent alpha-actinin. Both living and permeabilized cells incorporated the alpha-actinin regardless of whether the alpha-actinin was isolated from nonmuscle, skeletal, or smooth muscle, or whether it was labeled with different fluorescent dyes. The living muscle cells could beat up to 5 d after injection. Rest-length sarcomeres in beating myotubes and cardiac myocytes were approximately 1.9-2.4 microns long, as measured by the separation of fluorescent bands of alpha-actinin. There were areas in nearly all beating cells, however, where narrow bands of alpha-actinin, spaced 0.3-1.5 micron apart, were arranged in linear arrays giving the appearance of minisarcomeres. In myotubes, alpha-actinin was found exclusively in these closely spaced arrays for the first 2-3 d in culture. When the myotubes became contraction-competent, at approximately day 4 to day 5 in culture, alpha-actinin was localized in Z-bands of fully formed sarcomeres, as well as in minisarcomeres. Video recordings of injected, spontaneously beating myotubes showed contracting myofibrils with 2.3 microns sarcomeres adjacent to noncontracting fibers with finely spaced periodicities of alpha-actinin. Time sequences of the same living myotube over a 24-h period revealed that the spacings between the minisarcomeres increased from 0.9-1.3 to 1.6-2.3 microns. Embryonic cardiac myocytes usually contained contractile networks of fully formed sarcomeres together with noncontractile minisarcomeres in peripheral areas of the cytoplasm. In some cells, individual myofibrils with 1.9-2.3 microns sarcomeres were connected in series with minisarcomeres. Double labeling of cardiac myocytes and myotubes with alpha-actinin and a monoclonal antibody directed against adult chicken skeletal myosin showed that all fibers that contained alpha-actinin also contained skeletal muscle myosin. This was true whether alpha-actinin was present in Z-bands of fully formed sarcomeres or present in the closely spaced beads of minisarcomeres. We propose that the closely spaced beads containing alpha-actinin are nascent Z-bands that grow apart and associate laterally with neighboring arrays containing alpha-actinin to form sarcomeres during myofibrillogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号