首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential for nutrient load (30, 100 and 350 g N m−2 per year) to alter plant performance under saline conditions (control, 4.5, 9 and 13 dS m−1) was examined in the sedge Bolboschoenus medianus. Relative growth rates (RGR) across nutrient loadings ranged from 30.2 to 41.8 mg g−1 per day in controls and were reduced to 20.9–28.5 mg g−1 per day by salinities of 13 dS m−1. Whilst higher nutrient loads generally increased RGR, the response was smaller at higher salinities. Responses to salinity and nutrient load were specific. Nutrient load increased the RGR via increases in the leaf area ratio (LAR). The LAR ranged from 1.9 to 2.1 m2 kg−1 across salinity treatments at 30 g N m−2 per year, and increased to 2.5–2.8 m2 kg−1 at 350 g N m−2 per year. Salinity reduced the RGR via a reduction in the net assimilation rate (NAR). The NAR in control plants ranged from 14.7 to 16 g m−2 per day across nutrient loadings and decreased to 11–12 g m−2 per day at 13 dS m−1. Carbon isotope discrimination of leaves decreased by 2–3‰ in response to 13 dS m−1 at the lower nutrient loadings. A prominent response of B. medianus to salinity was a change in biomass allocation from culms to tubers. In contrast, the response to nutrient load was characterised by a shift in biomass allocation from roots to leaves.  相似文献   

2.
When using pulse-amplitude modulated (PAM) fluorometry to measure landscape-scale photosynthetic characteristics, diurnal variations in fluorescence during sampling may confound the assessment of the physiological condition. In this study, two photophysiological assessment techniques: Diurnal Yield and Diurnal Rapid Light Curve (RLC) were investigated in an attempt to incorporate the temporal and spatial scales of sampling into a physiological assessment of Thalassia testudinum in Florida Bay. Photosynthesis–irradiance (P–E) curves were calculated using both methods and the ability of each to predict the relationship between relative electron transport rates and irradiance was assessed. Both methods had limitations in providing consistent estimates of photosynthetic efficiency or capacity. The Diurnal Yield method produced unrealistically high predictions of photosynthetic capacity (relative electron transport rate (rETRmax), 417–1715) and saturation irradiance (Ik, 1045–4681 μmol photons m−2 s−1). In contrast, the Diurnal RLC method generally produced predictions of rETRmax (100–200) and Ik (300–500 μmol photons m−2 s−1) which were similar to average values calculated from each day's RLCs. The Diurnal RLC method was unable to predict photosynthetic efficiency () only when ambient irradiances were continuously >Ik during the sampling period. We believe that with sampling modifications in high-light or shallow environments, such as starting sampling earlier in the morning, extending sampling later in the day, or using the average from each day's RLCs, that the Diurnal RLC method can produce representative estimates of rETRmax, , and Ik, providing a method to characterize seagrass photosynthesis at the landscape-level. The Diurnal RLC method does not negate Diurnal variation but it produces a curve that incorporates the changing ambient light environment into the assessment of seagrass physiological status.  相似文献   

3.
Combined effects of UVB radiation and CO2 concentration on plant reproductive parts have received little attention. We studied morphological and physiological responses of siliquas and seeds of canola (Brassica napus L. cv. 46A65) to UVB and CO2 under four controlled experimental conditions: UVB radiation (4.2 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1) (control); UVB radiation (4.2 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1); no UVB radiation (0 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1); and no UVB radiation (0 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1). UVB radiation affected the outer appearance of siliquas, such as colour, as well as their anatomical structures. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 reduced the size of seeds, which had different surface patterns than those from no UVB radiation. At both CO2 levels, 4.2 kJ m−2 d−1 of UVB decreased net CO2 assimilation (AN) and water use efficiency (WUE), but had no effect on transpiration (E). Elevated CO2 increased AN and WUE, but decreased E, under both UVB conditions. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 decreased chlorophyll fluorescence, total chlorophyll (Chl), Chl a and Chl b, but had no effect on the ratio of Chl a/b and the concentration of UV-screening pigments. Elevated CO2 increased total Chl and the concentration of UV-screening pigments under 4.2 kJ m−2 d−1 of UVB radiation. Neither UVB nor CO2 affected wax content of siliqua surface. Many significant relationships were found between the above-mentioned parameters. This study revealed that UVB radiation exerts an adverse effect on canola siliquas and seeds, and some of the detrimental effects of UVB on these reproductive parts can partially be mitigated by CO2.  相似文献   

4.
This work reports on the design of a complex medium based on simple and complex carbon sources, i.e. glucose, sucrose, molasses, and defatted-soybean, and simple and complex nitrogen sources, i.e. (NH4)2HPO4, casein, and defatted-soybean, for serine alkaline protease (SAP) production by recombinant Bacillus subtilis carrying pHV1431::subC gene. SAP activity was obtained as 3050 U cm−3 with the initial defatted-soybean concentration Csoybeano=20 kg m−3 and initial glucose concentration CGo=8 kg m−3; whereas, addition of the inorganic nitrogen source (NH4)2HPO4 decreased SAP production considerably. Further increase in SAP production (3850 U cm−3) was obtained when sucrose was replaced with glucose at Csucroseo=15 kg m−3 and Csoybeano=20 kg m−3. Nevertheless, when molasses was replaced with sucrose, the maximum activity was obtained with molasses having 10 kg m−3 initial sucrose concentration and Csoybeano=15 kg m−3as 2130 U cm−3; moreover, when casein was replaced with defatted-soybean SAP production decreased considerably (ca. 250 U cm−3). Thereafter, the effects of inorganic ionic compounds were investigated; and except phosphate, inorganic compounds supplied from defatted-soybean were found to be sufficient for the bioprocess. The highest SAP activity was obtained as 5350 U cm−3 in the medium that contained (kg m−3): Csoybeano=20, Csucroseo=15, CNa2HPO4o=0.021, and CNaH2PO4o=2.82, that was 6.5-fold higher than that of the SAP produced in the defined medium. By using the designed complex medium, oxygen transfer characteristics of the bioprocess were investigated; and, Damköhler number that is the oxygen transfer limitation increases with the cultivation time until t=14 h; and, at t>20 h both mass transfer and biochemical reaction resistances were effective. Overall oxygen transfer coefficient varied between 0.010 and 0.044 s−1; volumetric oxygen uptake rate varied between 0.001 and 0.006 mol m−3 s−1; and specific oxygen uptake rate varied between 0.0001 and 0.0022 mol kg−1 DW s−1 throughout the bioprocess.  相似文献   

5.
Relatively large (0.19 m column diameter, 2 m tall, 0.06 m3 working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and a draft-tube airlift device) were compared for monoseptic fed-batch culture of the microalga Phaeodactylum tricornutum. The three photobioreactors produced similar biomass versus time profiles and final biomass concentration (4 kg m−3). The maximum specific growth rate observed within a daily illuminated period in the exponential growth phase, had a value of 0.08 h−1 on the third day of culture. Because of night-time losses of biomass, the specific growth rate averaged over the 4-days of exponential phase was 0.021 h−1 for the three reactors.

The biomass in the vertical column reactors did not experience photoinhibition under conditions (photosynthetically active daily averaged irradiance value of 1150±52 μE m−2 s−1) that are known to cause photoinhibition in conventional thin-tube horizontal loop reactors. Because of good gas-liquid mass transfer, the dissolved oxygen concentration in the reactors at peak photosynthesis remained <120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-oxidation of the biomass did not occur. Carbohydrate accumulation (up to 13% w/w) by the biomass was favored during light-limited linear growth. A declining light intensity caused a more than five-fold increase in cellular carotenoids but the chlorophylls increased only by about 2.5-fold during the course of the culture. In the stationary phase, up to 2% of the biomass was chlorophylls and carotenoids constituted up to 0.5% of the biomass dry weight.  相似文献   


6.
This work reports on the significance of UV-B absorbing compounds and DNA photorepair in protecting bean plants from UV-B radiation under nitrogen restriction. Bean plants grown in sterile vermiculite and irrigated periodically with a nutrient solution containing 12 or 1 mM of nitrate were irradiated with 22 μW cm−2 of UV-B, 4 h daily during 10 days after the first trifoliate leaf was developed. This intensity was equivalent to 3.2 kJ m−2 per day, approximately. PAR fluence rate was 350 ± 50 μmol quanta m−2 s−1. Control plants did not receive UV-B irradiation. Leaf expansion was negatively affected by both nitrate restriction and UV-B irradiation. This decrease was paralleled by a significant increase in starch, which was exacerbated by the combined action of both factors. Combined action of low nitrogen and UV-B also negatively affected the CO2 assimilation rate and the stomatal conductance. Formation of UV-B absorbing compounds was significantly increased by both UV-B irradiation and nitrogen restriction and this increase was exacerbated by the combination of both factors. No significant increase in dimer formation was detected in irradiated plants at the UV-B dose used. Significant dimer formation was only obtained by using very high UV-B intensities. This suggests that under an irradiation level of 22 μW cm−2 of UV-B, which is close to natural conditions, protective mechanisms such as pigment screening and DNA photorepair were probably sufficient to prevent any dimer formation in leaves.  相似文献   

7.
Light and temperature-response curves and their resulting coefficients, obtained within ecophysiological characterization of gas exchanges at the leaf level, may represent useful criteria for breeding and cultivar selection and required tools for simulation models aimed at the prediction of potential plant behaviour in response to environmental conditions.

Leaf-scale gas exchanges, by means of an IRGA open-flow system, were measured in response to light intensity (8 levels from 0 up to 2000 μmol m−2 s−1), CO2 concentrations (ambient—350 μmol mol−1 and short-term enriched—700 μmol mol−1) and air temperature (from 7 up to 35 °C) on three Vicia faba L. genotypes, each representing one of the three cultivated groups: major, equina and minor. The net assimilation rate response to light intensity was well described by an exponential rise to max function. The short-term CO2 enrichment markedly increased the values of light response curve parameters such as maximum photosynthetic rate (+80%), light saturation point (+40%) and quantum yield (+30%), while less homogenous behaviour was reported for dark respiration and light compensation point. For each light intensity level, the major and minor genotypes studied showed assimilation rates at least a 30% higher than equina.

The positive effects of short-term CO2 enrichment on photosynthetic water use efficiency (WUE) indicate a relevant advantage in doubling CO2 concentration. In the major and minor genotypes studied, similar assimilation rates, but different WUE were observed.

The optimum leaf temperature for assimilation process, calculated through a polynomial function, was 26–27 °C and no relevant limitations were observed in the range between 21 and 32 °C.

Analysis at the single leaf level provided both rapid information on the variations in gas exchange in response to environmental factors and selection criteria for the screening of genotypes.  相似文献   


8.
Two year-old cloned plants of Dendrobium Second Love were submitted to 25 °C (light) and 10 °C (dark) under a 12 h photoperiod (60 μmol m−1 s−1) for 30 days. The endogenous levels of IAA, ABA, and the cytokinins Z, [9R]Z, iP, and [9R]iP were measured 15, 22, and 30 days after the start of the thermoperiodic treatment in lateral buds and leaves. The endogenous levels of IAA and cytokinins, especially the zeatin-derived forms, increased significantly in buds after 15 days of treatment. On the other hand, the amount of ABA decreased progressively and significantly throughout the treatment. The treatment conspicuously accelerated flower-bud development. The found correlation suggests that hormones are involved in the signal transduction pathway of thermoperiodic flowering control.  相似文献   

9.
Graft copolymer of k-carrageenan and N,N-dimethylacrylamide has been synthesized by free radical polymerization using peroxymonosulphate/glycolic acid redox pair in an inert atmosphere. The grafting parameters i.e. grafting ratio, add on and efficiency decrease with increase in concentration of k-carrageenan from 0.6 to 1.4 g dm−3 and hydrogen ion from 3 × 10−3 to 7 × 10−3 mol dm−3, but these grafting parameters increase with increase in concentration of N,N-dimethylacrylamide from 16 × 10−2 to 32 × 10−2 mol dm−3, and peroxymonosulphate from 0.8 × 10−2 to 2.4 × 10−2 mol dm−3. The metal ion sorption, swelling behaviour and flocculation properties have been studied. The intrinsic viscosity of pure and grafted samples has been measured by using Ubbelohde capillary viscometer. Flocculation capability of k-carrageenan and k-carrageenan-g-N,N-dimethylacrylamide for both coking and non-coking coals has been studied for the treatment of coal mine waste water. The graft copolymer has been characterized by Infrared (IR) spectroscopy and thermogravimetric analysis.  相似文献   

10.
Guar gum has been modified by graft copolymerization with acrylic acid in aqueous medium using vanadium (V)–mercaptosuccinic acid redox system. The optimum reaction conditions affording maximum grafting ratio, efficiency, add on and conversion have been determined. The grafting parameters have been found to increase with increase in vanadium (V) concentration upto 1.0 × 10−2 mol dm−3, but these parameters decrease on further increasing the vanadium (V) concentration. On increasing the mercaptosuccinic acid concentration from 1.0 × 10−2 to 4.0 × 10−2 mol dm−3 grafting ratio, efficiency and add on increase up to 2.0 × 10−2 mol dm−3 but decrease with further increase in mercaptosuccinic acid concentration. On varying the acrylic acid concentration from 5.0 × 10−2 to 30.0 × 10−2 mol dm−3, maximum grafting ratio, efficiency and add on have been obtained at 20.0 × 10−2 mol dm−3. The grafting ratio, add on and conversion increase, on increasing the H+ ion concentration from 1.5 × 10−1 to 6.0 × 10−1 mol dm−3. On increasing the guar gum concentration the grafting parameters increase. The grafting ratio, add on and conversion have been found to increase with time period while efficiency started decreasing after 120 min. It has been observed that %G increases on increasing the temperature up to 35 °C. The graft copolymer has been characterized by IR spectroscopy and thermogravimetric analysis.  相似文献   

11.
We measured eddy covariance fluxes of CO2 and H2O over a flat irrigated olive orchard during growth, in different periods from Leaf Area Index (LAI) of 0.3–1.9; measurements of soil respiration were also collected. The daily net ecosystem exchange flux (FNEE) was practically zero at LAI around 0.4 or when the orchard intercepted 11% of the incoming daily radiation; at the end of the experiment, with LAI of 1.9 (and the fraction of intercepted daily radiation close to 0.5), FNEE was around 10 g CO2 m−2 day−1. The night-time ecosystem respiration (Reco), calculated from eddy fluxes in well-mixed night conditions, show a clear but non-linear dependence with LAI; it ranged from 0.05 to 0.15 mg CO2 m−2 s−1 (in average), being the lower limit ideally close to the heterotrophic soil respiration at the site. The gross primary production flux (FGPP) was linearly related to LAI within the LAI range of this experiment (with 11 g CO2 m−2 day−1 increments per unit of LAI) and to the fraction of intercepted radiation. The maximum rates of FGPP (0.75 mg CO2 m−2 s−1) were obtained in the summer mornings of 2002, at LAI close to 1.9. FGPP was strongly modulated by vapour pressure deficit (VPD) through the canopy conductance, even in absence of water stress. Hence, especially in the summer, the maximum rates of carbon assimilation are reached always before noon. The daily course of FGPP shows a two-phase pattern, first related to irradiance and then to canopy conductance. The water use efficiency (WUE) was, in average, 3.8, 6.3 and 7 g CO2 L−1 in 1999, 2001 and 2002, respectively, with maxima always in the early morning. Hourly WUE was strongly related to VPD (WUE = −10.25 + 22.52 × VPD−0.34). Our results suggest that drip irrigated orchards in general, and olive in particular, deserve specific carbon exchange and carbon budget studies and cannot be easily included in other biomes.  相似文献   

12.
Metal concentrations and population parameters of the seagrass Halodule wrightii were determined at three locations at Rio de Janeiro State, Brazil. The possible increase of metal availability in one of these areas, Sepetiba Bay, as a result of dredging of contaminated bottom sediments which ocurred, was evaluated by analyses of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn in root, rhizome and shoots. In addition, analyses were carried out in H. wrightii populations from non-contaminated areas located at northwestern (Cabo Frio) and southeastern (Angra do Reis) regions of Rio de Janeiro State. Concurrently, abundance and density data of the seagrass populations were obtained. It was found that concentration from Sepetiba Bay samples up to 1.6 ± 0.4 μg g−1 of Cd, 12 ± 1.0 μg g−1 of Cr, 27 ± 2.4 μg g−1 of Pb, 291 ± 47 μg g−1 of Mn, 128 ± 23 μg g−1 of Zn were significantly higher than that from two other collection sites. An increase in Cd and Zn concentration was observed in H. wrightii from Sepetiba Bay indicating that metal mobilization from contaminated sediments through dredging activities were, at least in part, transferred to the biotic compartment via accumulation by the seagrass. The populations of seagrass within the region demonstrated quite substantial changes in biomass data but not in shoot or rhizome density during the study. Such changes in biomass are to be expected, as these dynamics are typical of the small, isolated monospecific populations of H. wrightii along the Rio de Janeiro coast.  相似文献   

13.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

14.
The “Old Sulphur Well” has a subterranean input of water containing 5.5 mM total sulfide, which would be inhibitory to the growth of most bacteria. The obligately chemolithoautotrophic Halothiobacillus neapolitanus is a sulfur bacterium known to tolerate and metabolize high sulfide concentrations, and we report the isolation of H. neapolitanus strain OSWA from this source. Strain OSWA grows well on thiosulfate and tetrathionate as energy sources, and tolerates at least 5 mM sulfide. Its specific growth rates and yields in batch culture were 0.22 h−1 and 5.3 g mol−1 (thiosulfate), and 0.23 h−1 and 9.5 g mol−1 (tetrathionate). Its 16S rRNA gene sequence shows >99% identity to reference sequences of H. neapolitanus, and it shares morphological and physiological characteristics typical of the species. It is one of a very small number of strains of H. neapolitanus described to date, and the first to be isolated from an ancient sulfide-rich natural spa.  相似文献   

15.
The bioconversion of propionitrile to propionamide was catalysed by nitrile hydratase (NHase) using resting cells of Microbacterium imperiale CBS 498-74 (formerly, Brevibacterium imperiale). This microorganism, cultivated in a shake flask, at 28 °C, presented a specific NHase activity of 34.4 U mgDCW−1 (dry cell weight). The kinetic parameters, Km and Vmax, tested in 50 mM sodium phosphate buffer, pH 7.0, in the propionitrile bioconversion was evaluated in batch reactor at 10 °C and resulted 21.6 mM and 11.04 μmol min−1 mgDCW−1, respectively. The measured apparent activation energy, 25.54 kJ mol−1, indicated a partial control by mass transport, more likely through the cell wall.

UF-membrane reactors were used for kinetic characterisation of the NHase catalysed reaction. The time dependence of enzyme deactivation on reaction temperature (from 5 to 25 °C), on substrate concentrations (from 100 to 800 mM), and on resting cell loading (from 1.5 to 200 μg  ml−1) indicated: lower diffusional control (Ea=37.73 kJ mol−1); and NHase irreversible damage caused by high substrate concentration. Finally, it is noteworthy that in an integral reactor continuously operating for 30 h, at 10 °C, 100% conversion of propionitrile (200 mM) was attained using 200 μg  ml−1 of resting cells, with a maximum volumetric productivity of 0.5 g l−1 h−1.  相似文献   


16.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

17.
A study was carried out to determine the effect of feeding different tree leaves as supplements on nutrient digestion, rumen fermentation and blood parameters of sheep grazing on a semi-arid rangeland. Thirty adult Malpura rams of uniform body weight (39.0 ± 0.75) were divided into five groups of six each. They were grazed as a single flock from 08.00 to 17.00 h on a semi-arid rangeland. After the end of the grazing period, the first group (G1), which was not provided with any supplementation, served as the control. The second group (G2) was supplemented with 200 g of a concentrate mixture per head per day, whereas the third, fourth and fifth groups (G3–G5) were provided with approximately 200 g DM d−1 of freshly cut foliage from Prosopis cineraria, Acacia nilotica and Albezia lebbek. The foliage from P. cineraria contained 133.4 g kg−1 DM condensed tannin (CT) with protein precipitating capacity (PPC) of 66 g kg−1 DM, whereas A. nilotica contained 18.9 g kg−1 DM hydrolysable tannin (HT) with PPC of 11.5 g kg−1 DM. However, A. lebbek did not contain any tannin. The protein contents were 119, 139 and 194 g kg−1 DM, respectively. The DMI (g d−1) was 688, 916, 1024, 1003, 999 in G1, G2, G3, G4 and G5, respectively. Digestible crude protein (DCP) and metabolizable energy (ME) intakes in supplemented groups G2–G5 were higher (P < 0.05) than in the control (G1). Supplementation improved the DM digestibility in all groups, whereas CP digestibility was lower (P < 0.05) in G3 compared to G2, G4 and G5. Rumen fermentation study conducted 6 h after supplementation revealed that total N, ammonia N, and total VFA levels were lower (P < 0.05) in G3 compared to the other supplemented groups. Although the haemoglobin (Hb) levels were similar among groups, blood urea N (BUN) was lowest in G3 compared to the other groups. The initial body weights were similar among groups (mean 39 kg). After 60 days of experimental feeding, all groups maintained their body weight, except the control group (G1), which lost body weight. It was observed, that supplementation with tree leaves containing CT like P. cineraria helps in better rumen fermentation pattern by preventing excessive loss of nitrogen. It was concluded that maximum nutritional benefits of tree leaves could be harvested, if used as supplement rather than as a sole feed.  相似文献   

18.
This paper presents a model for the continuous production of green cells of the microalga Haematococcus pluvialis, in both indoor and outdoor conditions. To develop this model, the influence of irradiance and dilution rate on the performance of continuous cultures of H. pluvialis was studied in the laboratory but simulating outdoor conditions. Characterization of the cultures included biomass productivity, fluorescence of chlorophylls, pigment content, elemental composition of the biomass, cell density, cell size, homogeneity and nitrate consumption rate. Results showed that the optimal dilution rate was 0.04 h−1, and that higher external irradiance resulted in higher biomass productivity in all cases, with a maximum value of 0.58 g L−1day−1. Continuous cultures were stable for more than 3 months, in spite of photoinhibition at noon, producing homogeneous biomass with a stable biochemical composition and cell morphology at each steady state. Astaxanthin accumulation was not observed in spite of the high levels of irradiance essayed, and cells remained in the flagellated-palmeloids green form whatever the culture conditions. High dilution rates produced small cells of 22 μm diameter, with a high nitrogen content of up to 10.0% d.wt. The average irradiance within the reactor was the main factor determining the behaviour of the cultures, although the external irradiance impinging on the reactor surface also influenced the results, indicating the existence of photoinhibition. The influence of both external and average irradiance on the growth of H. pluvialis was modelized. The accuracy of the model obtained was verified on a 0.22 m3 outdoor tubular photobioreactor operated in both discontinuous and continuous mode, obtaining a maximum biomass productivity of 0.68 g L−1day−1. The model reproduced the experimental data of biomass concentration and productivity, cell size and nitrate consumption, providing to be a powerful tool for optimizing the design and operation of outdoor photobioreactors for the production of green cells of H. pluvialis.  相似文献   

19.
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1.  相似文献   

20.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号