首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stortz CA 《Carbohydrate research》2006,341(15):2531-2542
The adiabatic potential energy surfaces (PES) of six trisaccharides, sulfated derivatives of alpha-D-Gal p-(1-->3)-beta-D-Gal p-(1-->4)-alpha-D-Gal p and beta-D-Gal p-(1-->4)-alpha-D-Gal p-(1-->3)-beta-D-Gal p representing models of lambda-, mu-, and nu-carrageenans were obtained using the MM3 force-field at epsilon = 3. Each PES was described by a single contour map for which the energy is plotted against the two psi glycosidic angles, given the small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps. Most surfaces appear as expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. Only small interactions between the first and third monosaccharidic moieties of the trisaccharides are observed. The flexibility of the alpha-linkages appears nearly identical to that in their disaccharide counterparts, with only one exception, where it appears reduced by the presence of the third monosaccharide. On the other hand, the flexibility of the beta-linkage appears to be equal or sometimes even higher than that observed for the corresponding disaccharide.  相似文献   

2.
The adiabatic potential energy surfaces (PES) of two trisaccharides (beta-cellotriose and alpha-maltotriose) were obtained using the MM3 force field. Each PES can be described by a single 3D contour map for which the energy is plotted against the two psi glycosidic angles. Given the usually small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps (at least with MM3), it is valid to leave both phi glycosidic angles to relax in the process of building the conformational map of trisaccharides. The surfaces are those expected from the map of disaccharides containing the same linkages and monosaccharide units (i.e., beta-cellobiose and alpha-maltose), with second-order factors altering the 'symmetry' of both linkages. A large low-energy region appears for beta-cellotriose, comprising four minima in close proximity, with barriers between them below 0.6 kcal/mol. On the other hand, for alpha-maltotriose a main global minimum is observed, with several surrounding local minima. The surfaces obtained agree with single-crystal X-ray data on these trisaccharides and derivatives. A reduction of the linkage flexibilities is observed when passing from the disaccharides to the trisaccharides. Furthermore, the linkage closer to the reducing end appears to be less flexible than the linkage closer to the non-reducing end.  相似文献   

3.
The adiabatic potential energy surfaces (PES) of two trisaccharides with 2-linkages (alpha-kojitriose and beta-sophorotriose) were obtained using the MM3 force field, and are represented by a single 3D contour map for which the energy is plotted against the two psi glycosidic angles. In spite of the proximity of the positions where the two monosaccharidic units are linked to the central monosaccharide, an almost independent behavior of both linkages was found for the alpha-linked trisaccharide alpha-kojitriose, i.e., the surfaces are those expected from the maps of the disaccharide containing the same linkage. A slight shift of the position of the global minimum is found to occur, due to a hydrogen bond between the third and first monosaccharide units, which also leads to an increase in flexibility. On the other hand, for the beta-linked trisaccharide beta-sophorotriose, the surface is sharply different from that expected by observation of the disaccharide map. Some of the expected minima cannot appear unless a serious deformation of the phi and/or psi angles is produced. Furthermore, the global minimum corresponds to a combination of different conformations for each of the linkages, whereas another minimum with only slightly higher energy has both glycosidic linkages in a conformation less favored for the disaccharide, though close to that predicted in crystal diffraction studies.  相似文献   

4.
The potential energy surfaces of several alpha-(1-->3)- and beta-(1-->4)-linked disaccharides were obtained and plotted in terms of energy versus psi glycosidic angle. These plots were compared to those obtained previously in the way of the usual 3D contour maps, which relate the energy with the two glycosidic angles (phi and psi). Given the usually small variations of the phi angle in the low-energy regions (at least using MM3), both kinds of graphs lead to similar conclusions concerning flexibility measurements by two different methods and assessment of the effects of sulfation and/or hydroxyl group orientation. Only second-order effects were found with some sulfated disaccharides, not changing the general conclusions. The computational efforts required to produce those plots are smaller, and the plots are easier to interpret. Besides, the conversion of a 3D map into a 2D plot leaves the possibility of constructing 3D maps of carbohydrates including a second variable different to phi, e.g., the second psi angle of a trisaccharide or the omega angle of a 6-linked disaccharide.  相似文献   

5.
Stortz CA  Cerezo AS 《Biopolymers》2003,70(2):227-239
The adiabatic potential energy surfaces (PES) of six trisaccharides-namely 3,6-An-alpha-D-Galp-(1-->3)-beta-D-Galp-(1-->4)-3,6-An-alpha-D-Galp, beta-D-Galp-(1-->4)-3,6-An-alpha-D-Galp-(1-->3)-beta-D-Galp, and their derivatives sulfated on positions 2 and 4 of the beta-galactose unit-were obtained using the MM3 force field. Each PES was described by a single contour map for which the energy is plotted against the two psi glycosidic angles, given the small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps. In five of the six examples, the surfaces are those expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. However, when a sulfate group is present on C2 of a beta-galactose reducing end, a new low-energy minimum in a different region is produced, originated in a hydrogen bond between the first and third monosaccharidic moieties of the trisaccharide. The flexibility of the beta-linkages is nearly identical to that in their disaccharide counterparts, while that of the alpha-linkages is slightly reduced, independent of their presence closer or further away from the reducing end. A fair agreement is observed between the x-ray fiber diffraction analysis for a kappa-carrageenan double helix and the surfaces obtained for the trisaccharide analogs of that polymer.  相似文献   

6.
The disaccharide, alpha-maltose, forms the molecular basis for the analysis of the structure of starch, and determining the conformational energy landscape as the molecule oscillates around the glycosidic bonds is of importance. Thus, it is of interest to determine, using density functionals and a medium size basis set, a relaxed isopotential contour map plotted as a function of the phi(H) and psi(H) dihedral angles. The technical aspects include the method of choosing the starting conformations, the choice of scanning step size, the method of constraining the specific dihedral angles, and the fitting of data to obtain well defined contour maps. Maps were calculated at the B3LYP/6-31+G( *) level of theory in 5 degrees intervals around the (phi(H),psi(H))=(0 degrees ,0 degrees ) position, out to approximately +/-30 degrees or greater, for gg-gg'-c, gg-gg'-r, gt-gt'-c, gt-gt'-r, tg-tg'-c, and tg-tg'-r conformers, as well as one-split gg(c)-gg'(r) conformer. The results show that the preferred conformation of alpha-maltose in vacuo depends strongly upon the hydroxyl group orientations ('c'/'r'), but the energy landscape moving away from the minimum-energy position is generally shallow and transitions between conformational positions can occur without the addition of significant energy. Mapped deviations of selected parameters such as the dipole moment; the C1-O1-C4', H1-C1-O1, and H4'-C4'-O1 bond angles; and deviations in hydroxymethyl rotamers, O5-C5-C6-O6, O5'-C5'-C6'-O6', C5-C6-O6-H, and C5'-C6'-O6'-H', are presented. These allow visualization of the structural and energetic changes that occur upon rotation about the glycosidic bonds. Interactions across the bridge are visualized by deviations in H(O2)...O3', H(O3')...O2, and H1...H4' distances and the H(O2)-O2-C2-C1 and H'(O3')-O3'-C3'-C4' hydroxyl dihedral angles.  相似文献   

7.
The crystal structure of beta-maltose octapropanoate (1) was solved to improve understanding of di-, oligo-, and polysaccharide conformations. The O6 and O6' atoms are in gg and gt orientations, respectively. Extrapolation of the coordinates of the non-reducing residue and observed linkage bond and torsion angles of 1 [Formula: see text] yields a left-handed helix similar to amylose triacetate I. The phi and psi values of 1 are also similar to those of other crystalline, acylated maltose compounds as well as some hydroxyl-bearing molecules. Acylated maltose moieties are often stabilized by stacking of the carbonyl groups and alpha-carbons on O3 and O2' as well as by the exo-anomeric effect. The conformation of 1 is within the 1-kcal/mol contour on a hybrid energy map built with a dielectric constant of 7.5, but corresponds to higher energies on maps made with lower dielectric constants. In one region of phi,psi space, both hydroxyl-bearing and derivatized maltose moieties are found but no inter-residue, intramolecular hydrogen-bonding occurs. In another region, only hydroxyl-bearing molecules crystallize and O2'...O3 hydrogen bonds are always found. In agreement with the energy surfaces, amylose helices extrapolated from available linkage geometries were almost all left-handed.  相似文献   

8.
O-alpha-D-Galactopyranosyl-(1---4)-D-galactopyranose, C12H22O11, Mr = 342.30, crystallises in the orthorhombic space group P2(1)2(1)2(1), and has alpha = 5.826(1), b = 13.904(3), c = 17.772(4) A, Z = 4, and Dx = 1.579 g.cm-3. Intensity data were collected with a CAD4 diffractometer. The structure was solved by direct methods and refined to R = 0.063 and Rw = 0.084 for 2758 independent reflections. The glycosidic linkage is of the type 1-axial-4-axial with torsion angles phi O-5' (O-5'-C-1'-O-1'-C-4) = 98.1(2) degrees, psi C-3 (C-3-C-4-O-1'-C-1') = -81.9(3) degrees, phi H (H-1'-C-1'-O-1'-C-4) = -18 degrees, and psi H (H-4-C-4-O-1'-C-1') = 35 degrees. The conformation is stabilised by an O-3 . . . O-5' intramolecular hydrogen-bond with length 2.787(3) A and O-3-H . . . O-5' = 162 degrees. The glycosidic linkage causes a folding of the molecule with an angle of 117 degrees between the least-square planes through the pyranosidic rings. The crystal investigated contained 56(1)% of alpha- and 44(1)% of beta-galabiose as well as approximately 70% of the gauche-trans and approximately 30% of the trans-gauche conformers about the exocyclic C-5'-C-6' and C-5-C-6 bonds. The crystal packing is governed by hydrogen bonding that engages all oxygen atoms except the intramolecular acceptor O-5' and the glycosidic O-1' oxygen atoms.  相似文献   

9.
1. The relation of primary sequence to all residue backbone conformations was explored to test out starting conformations for protein folding. 2. Information theory was used to obtain measures of information which quantitate the role of each residue in determining its own conformation; i.e. intra-residue information. 3. The information measures are plotted as a function of varphi, psi peptide-backbone angles and varphi, psi contour maps obtained for each of the 20 amino acids. These show characteristic differences between residues. 4. To find practical ways of relating sequence to varphi, psi angles, several types of stereochemical alphabet were investigated. The value of these was tested by using them to predict the varphi, psi angles of nine different proteins. 5. A difference plot was constructed to show regions of the sequence that require little or no information extra to the intra-residue information in order to predict a correct conformation. These regions are suggested to be candidates for nucleating sites in the protein.  相似文献   

10.
Energy surfaces were computed for relative orientations of the relaxed pyranosyl rings of the two anomeric forms of kojibiose, nigerose, and maltose, the (1 → 2)-, (1 → 3)-- and (1 → 4)--linked -glucosyl disaccharides, respectively. Twenty-four combinations of starting conformations of the rotatable side-groups were considered for each disaccharide. Optimized structures were calculated using MM3 on a 20° grid spacing of the torsional angles about the glycosidic bonds. The energy surfaces of the six disaccharides were similar in many respects but differed in detail within the low-energy regions. The maps also illustrate the importance of the exo-anomeric effect and linkage type in determining the conformational flexibility of disaccharides. Torsional conformations of known crystal structures of maltosyl-containing molecules lie in a lower MM3 energy range than previously reported.  相似文献   

11.
Stortz CA 《Carbohydrate research》2002,337(21-23):2311-2323
The adiabatic conformational surfaces of several beta-linked disaccharides, which correspond to the repeating structures of carrageenans, were calculated using the MM3 force-field. The studies were carried out on the disaccharide beta-D-Galp-(1 --> 4)-alpha-D-Galp and eight sulfated derivatives, as well as on carrabiose (beta-D-Galp-(1 --> 4)-3,6-An-alpha-D-Galp) and five sulfated derivatives. The presence of 3,6-anhydrogalactose does not change the main features of the maps, although it increases the flexibility of the glycosidic linkage. Sulfation neither produces a striking effect on the map shape, nor a shift on the global minimum, which always remains with psi (theta(C-1'-O-4-C-4C-5)) in trans orientation, and phi (theta(O-5'-C-1'-O-4-C-4)) with a value close to -80 degrees. This effect differs from that occurring on the alpha linkage of equivalent disaccharides, for which the sulfation pattern on the beta-galactose unit shifts the global minima to different positions. A reduction in the flexibility (originated in a deepening of the global minimum well) is observed by sulfation on position 2 of the beta-D-galactose unit, and by sulfation of position 6 of the alpha-D-galactose unit (when the beta-D-galactose unit is 4-sulfated). Within the compounds containing 3,6-anhydrogalactose, the effect of sulfation is even less noticeable. The calculated low-energy regions on carrabiose derivatives agree with X-ray diffraction data on carrageenan fibers and on peracetylated carrabiose dimethyl acetal, and with NOE calculations carried out on kappa-carrabiose.  相似文献   

12.
Solution structure of anti-AIDS drug, 2',3'-dideoxyinosine (ddI) has been assessed by NMR spectroscopy and pseudorotational analysis in conjunction with its analogues: 2',3'-dideoxyadenosine (ddA), 2',3'-dideoxyguanosine (ddG) and 2',3'-dideoxycytidine (ddC). The absence of 3'-hydroxyl groups in these compounds has prompted us to establish the relationship between proton-proton and corresponding endocyclic torsion angles in the 2',3'-dideoxyribofuranose moiety on the basis of five available crystal structures of 2',3'-dideoxynucleosides. A subsequent pseudorotational analysis on ddI (1), ddA (2), ddG (3) and ddC (4) shows that the twist C2'exo-C3'-endo forms of sugar are overwhelmingly preferred (75-80%) over the C2'-endo envelope forms. The phase angles (P) for North and South conformers with the corresponding puckering amplitude (psi m) for ddI (1), ddA (2) and ddG (3) are as follows: PN = 0.1 degrees, PS = 161 degrees and psi m = 34.1 degrees for ddI (1); PN = 1.4 degrees, PS = 160 degrees and psi m = 34.2 degrees for ddA (2) and PN = 2.4 degrees, PS = 163 degrees and psi m = 33.6 degrees for ddG (3). The predominant North conformer of ddC (4) is intermediate between twist C2'-exo-C3'-endo and C3'-endo envelope (P = 10.9 degrees) with a psi m of 34.7 degrees. Note that these preponderant North-sugar structures (approx. 75-80%) found in the solution studies of ddI (1), ddA (2), dG (3) and ddC (4) are not reflected in the X-ray crystal structures of 2',3'-dideoxyadenosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures denosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures are found to be in the South-type geometry (ddA crystalizes in C3'-exo envelope form, while ddC adopts the form intermediate between the C3'-exo envelope and C3'-endo-C4'-exo twist form). This means that X-ray structures of ddA (2) and ddC (4) only represent the minor conformer of the overall pseudorotamer population in solution. An assumption that the structure of the pentofuranose sugar (i.e. P and psi m) participating in conformational equilibrium described by the two-state model remains unchanged at different temperatures has been experimentally validated by assessing five unknown pseudorotational parameters with eight unique observables (3J1'2', 3J1'2", 3J2'3', 3J2'3", 3J2"3', 3J2"3", 3J3'4' and 3J3"4') for 2',3'-dideoxynucleosides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.  相似文献   

14.
The structure of 3'-methylamino-2',3'-dideoxyribosylthymine [ddT(3'NHMe)] was determined by X-ray analysis. The space group is P2(1)2(1)2(1). Cell dimensions are: a 5.132(1), b 13.718(1), c 16.947(2) A, V 1193.2 A3, Z 4. The structure was solved by directed methods and refined by the full-matrix least square method to R 4.8%. The molecule of ddT(3'NHMe) has anti-conformation with respect to the glycosidic bond (chi (O4'-C1'-N1-C2) = -106.7 degrees), C3'-endo-C4'-exo puckering of the sugar moiety (P -28.8 degrees, psi m -31.5 degrees) and gauche-gauche conformation about exocyclic C4'-C5' bond (psi(C3'-C4'-C5'-O5') 45.8 degrees). The structure of ddT(3'NHMe) was compared with those of 3'-amino-3'-deoxythymidine, 3'-azido-3'-deoxythymidine and natural thymidine.  相似文献   

15.
An asymmetric synthesis route towards (3S,3'S)-(M,M)-(E)-(+)-1,1',2, 2',3,3',4,4'-octahydro-3,3',7,7'-tetramethyl-4,4'-biphenanthrylidene was developed using the Evans procedure as a key step. The absolute configurations of the title compound and of its parent ketone were determined by CD spectroscopy and could be correlated with the stereochemical results of the asymmetric alkylation. Furthermore, a comparison was made with the known (3R,3'R)-(P,P)-(E)-(-)-1,1',2,2', 3,3',4,4'-octahydro-3,3',7,7'-dimethyl-4,4'-biphenanthrylidene. Finally, the X-ray crystallographic analysis of (3S,3'S)-(M, M)-(E)-(+)-1,1',2,2',3,3',4,4'-octahydro-3,3',7,7'-tetramethyl-4, 4'-biphenanthrylidene is presented.  相似文献   

16.
In 3',5' deoxyribonucleoside diphosphates, in addition to the nature of the base and the sugar puckering, there are six single bond rotations. However, from the analysis of crystal structure data on the constituents of nucleic acids, only three rotational angles, that are about glycosyl bond, about C4'-C5' and about C3'-O3' bonds, are flexible. For a given sugar puckering and a base, potential energy calculations using non-bonded, electrostatic and torsional functions were carried out by varying the three torsion angles. The energies are represented as isopotential energy surfaces. Since the availability of the real-time color graphics, it is possible to analyse these isopotential energy surfaces. The calculations were carried out for C3' exo and C3' endo puckerings for deoxyribose and also for four bases. These calculations throw more light not only on the allowed regions for the three rotational angles but also on the relationships among them. The dependence of base and the puckering of the sugar on these rotational angles and thereby the flexibility of the 3',5' deoxyribonucleoside diphosphates is discussed. From our calculations, it is now possible to follow minimum energy path for interconversion among various conformers.  相似文献   

17.
We measured rates of oxidative metabolism of two tetrachlorobiphenyl (TCB) congeners by hepatic microsomes of two marine mammal species, beluga whale and pilot whale, as related to content of selected cytochrome P450 (CYP) forms. Beluga liver microsomes oxidized 3,3',4,4'-TCB at rates averaging 21 and 5 pmol/min per mg for males and females, respectively, while pilot whale samples oxidized this congener at 0.3 pmol/min per mg or less. However, rates of 3,3',4,4'-TCB metabolism correlated with immunodetected CYP1A1 protein content in liver microsomes of both species. The CYP1A inhibitor alpha-naphthoflavone inhibited 3,3',4,4'-TCB metabolism by 40% in beluga, supporting a role for a cetacean CYP1A as a catalyst of this activity. Major metabolites of 3,3',4,4'-TCB generated by beluga liver microsomes were 4-OH-3,3',4',5-TCB and 5-OH-3,3',4,4'-TCB (98% of total), similar to metabolites formed by other species CYP1A1, and suggesting a 4,5-epoxide-TCB intermediate. Liver microsomes of both species metabolized 2,2',5,5'-TCB at rates of 0.2-1.5 pmol/min per mg. Both species also expressed microsomal proteins cross-reactive with antibodies raised against some mammalian CYP2Bs (rabbit; dog), but not others (rat; scup). Whether CYP2B homologues occur and function in cetaceans is uncertain. This study demonstrates that PCBs are metabolized to aqueous-soluble products by cetacean liver enzymes, and that in beluga, rates of metabolism of 3,3',4,4'-TCB are substantially greater than those of 2,2',5,5'-TCB. These directly measured rates generally support the view that PCB metabolism plays a role in shaping the distribution patterns of PCB residues found in cetacean tissue.  相似文献   

18.
The conformational preference of the disaccharide alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----OMe) (1) about the glycosidic torsion angles, phi and psi, was studied by NMR NOESY spectroscopy and molecular mechanics calculations. The NOE data were consistent with either of two distinct conformations close to minima on a calculated phi/psi potential energy surface. Starting from the lowest energy conformation, a 1-ns molecular dynamics (MD) trajectory was computed in vacuo, from which the NOE curves were simulated and compared to the experimentally observed NOESY data.  相似文献   

19.
The selectins are a family of proteins that mediate leukocytetethering and rolling along the vascular endothelium. E-, P-,and L-selectin recognize various derivatives of the Lewisa andLewisx trisaccharides. The distribution of negative chargeson the Lewisa and Lewisx oligosaccharides appears to be an importantfactor in their binding by the selectins. Previous work exploringthis electrostatic dependence found that a series of syntheticanionic trisaccharides, 3'-sulfo, 3'-phospho, 6'-sulfo, and3',6'-disulfo Lewisa. (Glc), exhibited differing selectin inhibitoryefficacies. To explore the possibility that these differencesarise from conformational differences between the sugars, thesolution structures of these trisaccharides were determinedusing NMR and molecular dynamics simulations. Interproton distancesand interglycosidic torsion angles were determined at 37°Cusing NOESY buildup curves and 1D LRJ experiments, respectively.Data from both experiments agreed well with predictions madefrom 2000 picosecond unrestrained molecular dynamics simulations.We found that 3'-sulfation did not alter the core Lewisa conformation,a finding that reaffirms the results of previous study. In addition,we found that sulfation at the 6' position also leaves the trisaccharideconformation unperturbed. This is significant because the proximityof the 6'-sulfate group to the fucose ring might have alteredthe canonical Lewisa structure. The disulfate exhibited greaterflexibility than the other derivatives in dynamics simulations,but not so much as to affect NOE and heteronuclear couplingconstant measurements. Taken together, our findings supportthe use of Lewisa as a template onto which charged groups maybe added without significantly altering the trisaccharide'sstructure. oligosaccharides molecular dynamics simulations NMR sulfated Lewisa phosphorylated Lewisa  相似文献   

20.
The metabolism of benzo[a]pyrene by halogenated biphenyl-induced rat hepatic microsomal monooxygenases was determined using a high pressure liquid chromatographic assay system. Incubation of benzo[a]pyrene with microsomes from rats pretreated with phenobarbitone or phenobarbitone-type inducers (2,2',4,4',5,5'-hexachlorobiphenyl, 2,2',4,4',6,6'-hexachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,2',4,4',5,5'-hexabromobiphenyl, and 2,2',5,5'-tetrabromobiphenyl) resulted in increased overall metabolism of the hydrocarbon (less than fourfold) into phenolic, quinone, and diol metabolites, with the most striking increase observed in the formation of 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene. In contrast, the metabolism of benzo[a]pyrene by microsomes from rats induced with 3-methylcholanthrene or 3,3',4,4'-tetrachlorobiphenyl resulted in a greater than 10-fold increase in overall benzo[a]pyrene metabolism, with the largest increases observed in the formation of the trans-7,8- and -9,10-dihydrodiol metabolites of benzo[a]pyrene. However, in comparison to control and phenobarbitone-induced microsomes, the oxidative conversion of benzo[a]pyrene by microsomes induced with 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl into the 6,12-quinone was substantially inhibited. Previous reports have shown that the commercial halogenated biphenyl mixtures, fireMaster BP-6, and Aroclor 1254 are mixed-type inducers and that microsomes from rats pretreated with these mixtures markedly enhance the overall metabolism of benzo[a]pyrene. Not surprisingly, the metabolism of benzo[a]pyrene by microsomes from rats pretreated with the mixed-type inducers, 2,3,3',4,4'-penta-,2,3,3',4,4',5-hexa-, and 2',3,3',4,4',5-hexa- chlorobiphenyl was also increased and the metabolic profile was similar to that observed with fireMaster BP-6 and Aroclor 1254 induced microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号