首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of MRF4, a myogenic regulatory factor of the basic helix-loop-helix type, produced multiple changes in the myogenic program of the BC3H-1 cell line. BC3H-1 cells that stably expressed exogenous MRF4 were prepared and termed BR cell lines. Upon differentiation, the BR cells were found to have three muscle-specific properties (endogenous MyoD expression, myoblast fusion, and fast myosin light-chain 1 expression) that the parent BC3H-1 cells did not have. Of the four known myogenic regulatory factors (MyoD, myogenin, Myf-5, and MRF4), only MRF4 was capable of activating expression of the endogenous BC3H-1 myoD gene. In addition, the pattern of Myf-5 expression in BR cells was the opposite of that in BC3H-1 cells. Myf-5 expression was low in BR myoblasts and showed a small increase upon myotube formation, whereas Myf-5 expression was high in BC3H-1 myoblasts and decreased upon differentiation. Though the MRF4-transfected BR cells fused to form large myotubes and expressed fast myosin light-chain 1, the pattern of myosin heavy-chain isoform expression was the same in the BR and the nonfusing parent BC3H-1 cells, suggesting that factors in addition to the MyoD family members regulate myosin heavy-chain isoform expression patterns in BC3H-1 cells. In contrast to the changes produced by MRF4 expression, overexpression of Myf-5 did not alter BC3H-1 myogenesis. The results suggest that differential expression of the myogenic regulatory factors of the MyoD family may be one mechanism for generating cells with diverse myogenic phenotypes.  相似文献   

2.
Two skeletal muscle-specific regulatory factors, myogenin and MyoD1, share extensive homology within a myc similarity region and have each been shown to activate the morphologic and molecular events associated with myogenesis after transfection into nonmyogenic cells. The BC3H1 muscle cell line expresses myogenin and other muscle-specific genes, but does not express MyoD1 during differentiation. BC3H1 cells also do not upregulate alpha-cardiac actin or fast myosin light chain, nor do they form multinucleate myotubes during differentiation. In this study, we examined the basis for the lack of MyoD1 expression in BC3H1 cells and investigated whether their failure to express MyoD1 is responsible for their defects in differentiation. We report that expression of an exogenous MyoD1 cDNA in BC3H1 cells was sufficient to elevate the expression of alpha-cardiac actin and fast myosin light chain, and to convert these cells to a phenotype that forms multinucleate myotubes during differentiation. Whereas myogenin and MyoD1 positively regulated their own expression in transfected 10T1/2 cells, they could not, either alone or in combination, activate MyoD1 expression in BC3H1 cells. Exposure of BC3H1 cells to 5-azacytidine also failed to activate MyoD1 expression or to rescue the cell's ability to fuse. These results suggest that BC3H1 cells may possess a defect that prevents activation of the MyoD1 gene by MyoD1 or myogenin. That an exogenous MyoD1 gene could rescue those aspects of the differentiation program that are defective in BC3H1 cells also suggests that the actions of MyoD1 and myogenin are not entirely redundant and that MyoD1 may be required for activation of the complete repertoire of events associated with myogenesis.  相似文献   

3.
4.
5.
The development of muscle cells involves the action of myogenic determination factors. In this report, we show that human skeletal muscle tissue contains, besides the previously described Myf-5, two additional factors Myf-3 and Myf-4 which represent the human homologues of the rodent proteins MyoD1 and myogenin. The genes encoding Myf-3, Myf-4 and Myf-5 are located on human chromosomes 11, 1, and 12 respectively. Constitutive expression of a single factor is sufficient to convert mouse C3H 10T1/2 fibroblasts to phenotypically normal muscle cells. The myogenic conversion of 10T1/2 fibroblasts results in the activation of the endogenous MyoD1 and Myf-4 (myogenin) genes. This observation suggests that the expression of Myf proteins leads to positive autoregulation of the members of the Myf gene family. Individual myogenic colonies derived from MCA C115 cells (10T1/2 fibroblast transformed by methylcholanthrene) express various levels of endogenous MyoD1 mRNA ranging from nearly zero to high levels. The Myf-5 gene was generally not activated in 10T1/2 derived myogenic cell lines but was expressed in some MCA myoblasts. In primary human muscle cells Myf-3 and Myf-4 mRNA but very little Myf-5 mRNA is expressed. In mouse C2 and P2 muscle cell lines MyoD1 is abundantly synthesized together with myogenin. In contrast, the rat muscle lines L8 and L6 and the mouse BC3H1 cells express primarily myogenin and low levels of Myf-5 but no MyoD1. Myf-4 (myogenin) mRNA is present in all muscle cell lines at the onset of differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
Myogenic satellite cells are heterogeneous multipotential stem cells that are required for muscle repair, maintenance, and growth. The membrane‐associated heparan sulfate proteoglycans syndecan‐4 and glypican‐1 differentially regulate satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) signal transduction, and expression of the myogenic regulatory factors MyoD and myogenin. The objective of the current study was to determine the effect of age on syndecan‐4 and glypican‐1 satellite cell populations, proliferation, differentiation, FGF2 responsiveness, and expression of syndecan‐4, glypican‐1, MyoD, and myogenin using satellite cells isolated from the pectoralis major muscle of 1‐day‐old, 7‐week‐old and 16‐week‐old turkeys. Proliferation was significantly reduced in the 16‐week‐old satellite cells, while differentiation was decreased in the 7‐week‐old and the 16‐week‐old cells beginning at 48 h of differentiation. Fibroblast growth factor 2 responsiveness was highest in the 1‐day‐old and 7‐week‐old cells during proliferation; during differentiation there was an age‐dependent response to FGF2. Syndecan‐4 and glypican‐1 satellite cell populations decreased with age, but syndecan‐4 and glypican‐1 were differentially expressed with age during proliferation and differentiation. MyoD and myogenin mRNA expression was significantly decreased in 16‐week‐old cells compared to the 1‐day‐old and 7‐week‐old cells. MyoD and myogenin protein expression was higher during proliferation in the 16‐week‐old cells and decreased with differentiation. These data demonstrate an age‐dependent effect on syndecan‐4 and glypican‐1 satellite cell subpopulations, which may be associated with age‐related changes in proliferation, differentiation, FGF2 responsiveness, and the expression of the myogenic regulatory factors MyoD and myogenin.  相似文献   

9.
10.
Hypoxia alters the biological functions of skeletal muscle cells to proliferate and differentiate into myotubes. However, the cellular responses of myoblasts to hypoxia differ according to the levels of oxygen and the types of cells studied. This study examined the effect of hypoxia (1% oxygen) on bovine satellite cells. Hypoxia significantly increased the proliferation of satellite cells cultured in a growth medium. In addition, the levels of PCNA, cyclin D1, cyclin-dependent kinase-1 (CDK1) and CDK2 expression were increased. Hypoxia facilitated the formation of myotubes as well as the stimulation of MyoD, myogenin, and myosin heavy chain (MHC) expression in differentiating medium (DM) cultures. In particular, satellite cells cultured under hypoxic/DM conditions showed increased p21 expression but not p27. The transfection of satellite cells with antisense MyoD oligonucleotides resulted in a decrease in the MHC, myogenin, MRF4 RNA and protein levels with the concomitant decrease in fused cells to levels similar to those observed under normoxia/DM conditions. This indicates that MyoD up-regulation is closely associated with hypoxia-stimulated myogenic differentiation. In conclusion, hypoxia stimulates the proliferation of satellite cells and promotes their myogenic differentiation with MyoD playing an important role.  相似文献   

11.
Little is known about the factors which regulate vascular smooth muscle (vsm) actin gene expression during skeletal myogenesis in culture. We have therefore looked for differences in the levels of accumulation of vsm actin mRNA among six mouse cell lines differing in apparent myogenic potential or in the complement of myogenesis determination genes which they express: NIH 3T3 and 10T1/2 non-myogenic fibroblasts and four myogenic lines--3T3-MyoD1 and 10EMc11s, MyoD/myogenin expressing sublines of the fibroblast lines, derived by transfer into the parent lines of a MyoD cDNA expression construct; C2C12, which expresses all four known myogenesis determination genes; and BC3H1, which expresses myf-5, myogenin, little herculin, and no MyoD. In differentiated cells of all four myogenic lines, vsm actin mRNA was expressed at levels dramatically higher than in growth-arrested NIH 3T3 cells, consistent with expression of vsm actin mRNA as an intrinsic part of the skeletal myogenic program somehow directed by myogenesis determination gene products. Interestingly, however, the level of vsm actin mRNA in growth arrested C3H10T1/2 fibroblasts was also dramatically higher than that in NIH 3T3. In view of these findings, and of the relative ease with which 10T1/2 as opposed to NIH 3T3 cells can be converted to myogenic lines, we hypothesize that factors which can act to regulate vsm actin gene expression in the absence of myogenesis determination gene expression may also influence the skeletal myogenic potential of the cells in which they are found. Among the myogenic lines, the ratio of vsm to skm actin mRNA was highest in BC3H1 cells, raising the possibility that were these cells forced to express MyoD and/or more herculin, as do the other myogenic lines, the ratio would decrease. Thus both fibroblast and myogenic lines will be useful for investigating the mechanisms controlling skeletal myogenesis and vsm and skm actin gene expression during myogenesis.  相似文献   

12.
Little is known about the factors which regulate vascular smooth muscle (vsm) actin gene expression during skeletal myogenesis in culture. We have therefore looked for differences in the levels of accumulation of vsm actin mRNA among six mouse cell lines differing in apparent myogenic potential or in the complement of myogenesis determination genes which they express: NIH 3T3 and 10T1/2 non-myogenic fibroblasts and four myogenic lines--3T3-MyoD1 and 10EMc11s, MyoD/myogenin expressing sublines of the fibroblast lines, derived by transfer into the parent lines of a MyoD cDNA expression construct; C2C12, which expresses all four known myogenesis determination genes; and BC3H1, which expresses myf-5, myogenin, little herculin, and no MyoD. In differentiated cells of all four myogenic lines, vsm actin mRNA was expressed at levels dramatically higher than in growth-arrested NIH 3T3 cells, consistent with expression of vsm actin mRNA as an intrinsic part of the skeletal myogenic program somehow directed by myogenesis determination gene products. Interestingly, however, the level of vsm actin mRNA in growth arrested C3H10T1/2 fibroblasts was also dramatically higher than that in NIH 3T3. In view of these findings, and of the relative ease with which 10T1/2 as opposed to NIH 3T3 cells can be converted to myogenic lines, we hypothesize that factors which can act to regulate vsm actin gene expression in the absence of myogenesis determination gene expression may also influence the skeletal myogenic potential of the cells in which they are found. Among the myogenic lines, the ratio of vsm to skm actin mRNA was highest in BC3H1 cells, raising the possibility that were these cells forced to express MyoD and/or more herculin, as do the other myogenic lines, the ratio would decrease. Thus both fibroblast and myogenic lines will be useful for investigating the mechanisms controlling skeletal myogenesis and vsm and skm actin gene expression during myogenesis.  相似文献   

13.
In vitro indeterminate teleost myogenesis appears to be dependent on Pax3   总被引:1,自引:0,他引:1  
The zebrafish (Danio rerio) has been used extensively as a model system for developmental studies but, unlike most teleost fish, it grows in a determinate-like manner. A close relative, the giant danio (Devario cf. aequipinnatus), grows indeterminately, displaying both hyperplasia and hypertrophy of skeletal myofibers as an adult. To better understand adult muscle hyperplasia, a postlarval/postnatal process that closely resembles secondary myogenesis during development, we characterized the expression of Pax3/7, c-Met, syndecan-4, Myf5, MyoD1, myogenin, and myostatin during in vitro myogenesis, a technique that allows for the complete progression of myogenic precursor cells to myotubes. Pax7 appears to be expressed only in newly activated MPCs while Pax3 is expressed through most of the myogenic program, as are c-Met and syndecan-4. MyoD1 appears important in all stages of myogenesis, while Myf5 is likely expressed at low to background levels, and myogenin expression is enriched in myotubes. Myostatin, like MyoD1, appears to be ubiquitous at all stages. This is the first comprehensive report of key myogenic factor expression patterns in an indeterminate teleost, one that strongly suggests that Pax3 and/or Myf5 may be involved in the regulation of this paradigm. Further, it validates this species as a model organism for studying adult myogenesis in vitro, especially mechanisms underlying nascent myofiber recruitment.  相似文献   

14.
Age-associated decrease in muscle precursor cell differentiation   总被引:2,自引:0,他引:2  
Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27Kip1 is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27Kip1 protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels. satellite cells; skeletal muscle; p27Kip1; myogenic regulatory factors  相似文献   

15.
Although satellite cell differentiation is involved in postnatal myogenesis from growth to posttrauma regeneration, the early stages of this process remain unclear. This study investigatedpHuDes-nls-lacZtransgene activity, as revealed by X-gal staining and the accumulation of MyoD, myogenin, endogenous desmin, and myosin, in order to determine whether satellite cells share the same activation program during growth and regeneration. After birth, skeletal myonuclei in which myogenin expression was limited were briefly characterized by transgene activity. Satellite cells were only evidenced by MyoD and slow myosin accumulation, but failed to initiate transgene expression. After freeze trauma, satellite cell activation led to MyoD, myogenin, and desmin expression. Subsequently, when myosin expression occurred, transgene activation was apparent in regenerating structures, with more intense X-gal staining in mononucleated cells than regenerating myotubes. After the second week posttrauma, only desmin and myogenin expression were maintained in regenerating structures. In culture, the behavior of satellite cells showed that desmin expression was committed before transgene activation occurred, i.e., concurrently with MyoD, myogenin, myosin expression, and the first fusion events. Quantitative analysis confirmed the discrepancy between endogenous desmin and transgene expression and demonstrated the close correlation between transgene activation and the fusion index. Our results strongly suggest that satellite cells promote distinct pathways of myogenic response during growth and regeneration.  相似文献   

16.
Positive autoregulation of the myogenic determination gene MyoD1   总被引:83,自引:0,他引:83  
Transfection of cDNA expression vectors encoding either MyoD1 or myogenin into 10T1/2 cells converts them to myogenic cells. We show that transfection of 10T1/2 cells with the MyoD1 cDNA activates expression of endogenous MyoD1 mRNA, indicating that MyoD1 is subject to positive autoregulation. This activation of endogenous MyoD1 mRNA was also observed in Swiss 3T6 cells, but not in several other fibroblast or adipoblast cell lines transfected with the MyoD1 cDNA. In addition, transfection of the MyoD1 cDNA leads to activation of myogenin expression, and transfection of the myogenin cDNA leads to activation of MyoD1 expression. Thus, MyoD1 and myogenin appear to function in a positive autoregulatory loop that could either: account for or contribute to the stability of myogenic commitment; or amplify the level of expression of both MyoD1 and myogenin above a critical threshold that is required for activation of the myogenic program.  相似文献   

17.
18.
Sarcomeric Gene Expression and Contractility in Myofibroblasts   总被引:3,自引:1,他引:2       下载免费PDF全文
Myofibroblasts are unusual cells that share morphological and functional features of muscle and nonmuscle cells. Such cells are thought to control liver blood flow and kidney glomerular filtration rate by having unique contractile properties. To determine how these cells achieve their contractile properties and their resemblance to muscle cells, we have characterized two myofibroblast cell lines. Here, we demonstrate that myofibroblast cell lines from kidney mesangial cells (BHK) and liver stellate cells activate extensive programs of muscle gene expression including a wide variety of muscle structural proteins. In BHK cells, six different striated myosin heavy chain isoforms and many thin filament proteins, including troponin T and tropomyosin are expressed. Liver stellate cells express a limited subset of the muscle thick filament proteins expressed in BHK cells. Although these cells are mitotically active and do not morphologically differentiate into myotubes, we show that MyoD and myogenin are expressed and functional in both cell types. Finally, these cells contract in response to endothelin-1 (ET-1); and we show that ET-1 treatment increases the expression of sarcomeric myosin.  相似文献   

19.
20.
The myosin heavy chain (MHC) IIB gene is selectively expressedin skeletal muscles, imparting fast contractile kinetics. Why the MHCIIB gene product is expressed in muscles like the tibialis anterior(TA) and not expressed in muscles like the soleus is currently unclear.It is shown here that the mutation of an E-box within the MHC IIBpromoter decreased reporter gene activity in the fast-twitch TA muscle90-fold as compared with the wild-type promoter. Reporter geneexpression within the TA required this E-box for activation of aheterologous construct containing upstream regulatory regions of theMHC IIB promoter linked to the basal 70-kDa heat shock protein TATApromoter. Electrophoretic mobility shift assays demonstrated thatmutation of the E-box prevented the binding of both MyoD and myogeninto this element. In cotransfected C2C12myotubes and Hep G2 cells, MyoD preferentially activated the MHC IIBpromoter in an E-box-dependent manner, whereas myogenin activated theMHC IIB promoter to a lesser extent, and in an E-box-independent manner. A time course analysis of hindlimb suspension demonstrated thatthe unweighted soleus muscle activated expression of MyoD mRNA beforethe de novo expression of MHC IIB mRNA. These data suggest a possiblecausative role for MyoD in the observed upregulation of MHC IIB in theunweighted soleus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号