首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five 16-androstenes have been simultaneously quantified in extracts of the axillary hair of men (age range 18-40 years) using combined capillary gas chromatography-mass spectrometry, with specific ion monitoring. Quantities found (pmol/mg.hair, with approximate 24-h totals in parentheses) were: 5 alpha-androst-16-en-3-one, 0-15 (0-433); 4, 16-androstadien-3-one, 0-143 (0-4103); 5,16-androstadien-3 beta-ol, 0-3.5 (0-728); 5 alpha-androst-16-en-3 alpha-ol, 0-17 (0-1752) and 5 alpha-androst-16-en-3 beta-ol, 0-4 (0-416). There were no significant relationships with age of the subjects for any of the steroids measured but significant relationships were found between the amounts of the two ketones and between 5 alpha-androst-16-en-3 alpha- and 3 beta-ols. These findings may indicate the existence of a pathway of metabolism in axillary bacteria in which 4,16-androstadien-3-one is reduced to 5 alpha-androst-16-en-3-one and thence to the 3 alpha- and 3 beta-alcohols. The data are discussed in the context of axillary odour because of the low olfactory thresholds of several of the 16-androstenes measured and because of the relatively large quantities found in some subjects.  相似文献   

2.
1. The metabolism of [4-(14)C]pregnenolone to androst-16-enes has been studied in short-term incubations of boar testis tissue. With fresh tissue androsta-5,16-dien-3beta-ol (8%) and 5alpha-androst-16-en-3beta-ol (2%) were formed. Tissue that had been stored at -20 degrees C was still capable of metabolizing pregnenolone to androsta-5,16-dien-3beta-ol. 2. NADPH was essential for the formation of androsta-5,16-dien-3beta-ol from pregnenolone; NADH had less activity and ATP was not necessary for the reaction. 3. [4-(14)C]Androsta-5,16-dien-3beta-ol, prepared biosynthetically from [4-(14)C]pregnenolone, was shown to be converted by boar testis preparations into androsta-4,16-dien-3-one (31%) if NAD(+) was present or into 5alpha-androst-16-en-3beta-ol (4%) if NADPH was present. 4. 17alpha-Hydroxyandrost-4-en-3-one and 3beta,17alpha-dihydroxypregn-5-en-20-one were considered as possible precursors for androst-16-ene formation, but both were shown to be ineffective. 5. No radioactivity was incorporated into androst-5-en-3beta-ol used to trap any corresponding (14)C-labelled compound formed from [4-(14)C]pregnenolone.  相似文献   

3.
The epididymis of adult rats metabolizes 3H 5alpha-androstane-3alpah,17beta-diol (3alpha-diol) by experiments in vitro. After incubation of tissue slices at 37 degrees C for 2 hours, 2% of the radioactivity was found in the water-soluble fraction whereas 98% was found to be ether soluble (free steroids). Further investigation of the free steroids showed the following to be present: 3alpha-diol 39.9%, DHT (17beta-hydroxy-5alpha-androstan-3-one) 33.7%, androsterone (3alpha-hydroxy-5alpha-androstan-17-one) 9.2%, 3beta-diol (5alpha-androstane-3beta,17beta-diol) 2.6%, 5alpha-A-dione (5alpha-androstan-3,17-dione) 1.1%, delta 16-3alpha-ol (5alpha-androst-16-en-3alpha-ol) 1.0%, delta16-3beta-ol (5alpha-androst-16-en-3beta-ol) 2.6%, delta 16-3-one (5alpha-androst-16-en-3-one) 2.9%, and polar compounds 3.3%. When segments of the epididymis (caput and cauda) were incubated in the same way, qualitatively similar metabolites were formed but a greater amount of 3alpha-diol was metabolized by the cauda epididymis. This increase was mainly accounted for by an increased formation of delta 16 compounds (14.3% in cauda, 4.3% in caput). This is most probably due to the presence of larger numbers of mature spermatozoa, which, as we have previously shown, form delta16 steroids from 3alpha-diol and DHT (5).  相似文献   

4.
Spermatozoa from bovine ejaculates and cauda epiditymidis were incubated with either tritiated 17 beta-hydroxy-5 alpha-androstane-3-one (DHT) or 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol). Examination of the medium incubations demonstrated metabolic conversion of both DHT and 3 alpha-diol when these steriods were incubated with ejaculated sperm. In addition to this interconversion, the following metabolities were identified: 5 alpha-androstane-3 beta, 17 beta-diol, (3 beta-diol), androsterone and 5 alpha-androstane-3, 17-dione (5 alpha-A-dione). Incubations with cauda spermatozoa showed similar metabolic patterns. Androgen binding was exhibited by both sperm types. Examination of the washed cauda sperm pellet, following incubations with 3 alpha-diol showed that the incubated steroid was the most abundantly bound. DHT and 5 alpha-androst-16-en-3 alpha-ol (delta 16-3 alpha-ol1 were also detected. The major part of the radioactivity bound in the sperm pellet was identified as DHT when this steroid was used as the substrate; the remaining radioactivity consisted of 3 alpha-diol and delta 16-3 alpha-ol. Investigations of ejaculated sperm pellets gave similar results apart from the additional identification of 5 alpha-androst-16-en-3 one (delta 16-3-one) and 5 alpha-androst-16-en-3 beta-ol (delta 16-3 beta-ol (delta 16-3 beta-ol).  相似文献   

5.
1. The formation of the two 16-unsaturated alcohols 5alpha-androst-16-en-3alpha-ol and 5alpha-androst-16-en-3beta-ol from [5alpha-(3)H]5alpha-androst-16-en-3-one has been demonstrated in boar testis homogenates. 2. The optimum yield (23%) of the 3alpha-alcohol was obtained in the presence of NADPH, whereas that for the 3beta-alcohol (74%) was obtained when NADH was the added cofactor. 3. The two alcohols were not interconvertible. 4. Prolonged storage of boar testis tissue at -20 degrees C abolished the ability to form all androst-16-enes except androsta-4,16-dien-3-one from [4-(14)C]progesterone. 5. The production of 5alpha-androst-16-en-3-one and the two alcohols from [7alpha-(3)H]androsta-4,16-dien-3-one only occurred when fresh tissue was used, whereas reduction of [5alpha-(3)H]5alpha-androst-16-en-3-one was unaffected by storage of testis at -20 degrees C. 6. NADPH was the preferred cofactor for the reduction of androsta-4,16-dien-3-one. 7. The previously established conversion of androsta-5,16-dien-3beta-ol into androsta-4,16-dien-3-one was shown to be reversible, NADH and NADPH being equally effective cofactors. 8. Pathways of biosynthesis of 5alpha-androst-16-en-3alpha- and 3beta-ols, with the C(19) 3-oxo steroids as intermediates, are presented.  相似文献   

6.
The substrate specificity of the reconstituted delta 16-C19-steroid synthetase system, which catalyzes the formation of 5,16-androstadien-3 beta-ol or 4,16-androstadien-3-one from pregnenolone or progesterone, respectively, was studied. The reconstituted system consisted of a partially purified cytochrome P-450, NADPH-cytochrome P-450 reductase, cytochrome b5 and NADH-cytochrome b5 reductase all from pig testicular microsomes. It was found that 5 alpha-reduced C21 steroids such as 5 alpha-pregnane-3,20-dione, 3 alpha-hydroxy-5 alpha-pregnan-20-one and 3 beta-hydroxy-5 alpha-pregnan-20-one can be substrates for the enzyme system, resulting in the formation of 5 alpha-androst-16-en-3-one, 5 alpha-androst-16-en-3 alpha-ol and 5 alpha-androst-16-en-3 beta-ol, respectively. The results suggest that 5 alpha-reduced delta 16-C19 steroids might be synthesized from pregnenolone and progesterone via 5 alpha-reduced C21 steroids as intermediates. The pathways would bypass 5,16-androstadien-3 beta-ol and 4,16-androstadien-3-one which have been assumed as obligatory intermediates in the formation of 5 alpha-reduced delta 16-C19 steroids from pregnenolone and progesterone.  相似文献   

7.
The metabolism of stenbolone acetate (17 beta-acetoxy-2-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. Nine metabolites were detected in urine either as glucuronic or sulfuric acid aglycones after oral administration of a single 50 mg dose to a male volunteer. Stenbolone, the parent compound, was detected for more than 120 h after administration and its cumulative excretion accounted for 6.6% of the ingested dose. Most of the stenbolone acetate metabolites were isolated from the glucuronic acid fraction, namely: stenbolone, 3 alpha-hydroxy-2-methyl-5 alpha-androst-1-en- 17-one, 3 alpha-hydroxy-2 xi-methyl-5 alpha-androst-17-one; 3 isomers of 3 xi, 16 xi-dihydroxy-2-methyl-5 alpha-androst-1-en-17-one; 16 alpha and 16 beta-hydroxy-2-methyl-5 alpha-androst-1-ene-3, 17-dione; and 16 xi, 17 beta-dihydroxy-2-methyl-5 alpha-androst-1-en-3-one. Only isomeric metabolites bearing a 16 alpha or a 16 beta-hydroxyl group were detected in the sulfate fraction. Interestingly, no metabolite was detected in the unconjugated steroid fraction. The steroids identities were assigned on the basis of their TMS ether, TMS enol-TMS ether, MO-TMS and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. Data indicated that stenbolone acetate was metabolized into several compounds resulting from oxidation of the 17 beta-hydroxyl group and/or reduction of A-ring delta-1 and/or 3-keto functions with or without hydroxylation at the C16 position. Finally, comparison of stenbolone acetate urinary metabolites with that of methenolone acetate shows similar biotransformation pathways for both delta-1-3-keto anabolic steroids. This indicates that the position of the methyl group at the C1 or C2 position in these steroids has little effect on their major biotransformation routes in human, to the exception that stenbolone cannot give rise to metabolites bearing a 2-methylene group since its 2-methyl group cannot isomerize into a 2-methylene function through enolization of the 3-keto group as previously observed for methenolone.  相似文献   

8.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   

9.
During the alkaline methanolysis of 3beta-acetoxy-21-chloropregn-5-ene-20beta-N-phenylurethane (4a), and its 4-monosubstituted (4b-e) and 3,5-disubstituted (4f) phenyl derivatives, cyclization occurs, in the course of which 17beta-[3-(N-phenyl)-2-oxazolidon-5-yl]androst-5-en-3beta-ol (5a) and its substituted phenyl derivatives (5b-f) are formed. The cyclization takes place with (N(-)-5) neighboring group participation. The reaction of 3beta-acetoxy-21-azidopregn-5-en-20beta-ol (3d) with triphenylphosphine gave 3beta-acetoxy-21-phosphiniminopregn-5-en-20beta-ol, which reacted in situ with carbon dioxide with the participation of the sterically favored 20beta-OH to give the unsubstituted steroidal cyclic carbamate (8). Oppenauer oxidation of the 3beta-hydroxy-exo-heterocyclic steroids (5a-f, 9) yielded the corresponding Delta(4)-3-ketosteroids (7a-f, 10). The inhibitory effects (IC(50)) of these compounds on rat testicular C(17,20)-lyase were investigated with an in vitro radioligand incubation technique. The N-unsubstituted 17beta-(2-oxazolidon-5-yl)-androst-4-en-3-one derivative (10) was found to be a potent inhibitor (IC(50)=3.0 microM).  相似文献   

10.
T K Kwan  C Orengo  D B Gower 《FEBS letters》1985,183(2):359-364
The biosynthesis of testosterone and 4-androstene-3,17-dione and some 16-androstenes has been studied in homogenates or subcellular fractions of testes from 3-week-old Landrace piglets. Pregnenolone was converted into 5,16-androstadien-3 beta-ol, 4,16-androstadien-3-one, 5 alpha-androst-16-en-3-one and 5 alpha-androst-16-en-3 alpha- and 3 beta-ols, but the quantities were some 50 times less than those formed in the mature boar testis. Androgens were also formed in the microsomal fractions but the quantities of 4-androstene-3,17-dione (from side-chain cleavage of 17-hydroxyprogesterone) and of testosterone (from reduction of 4-androstene-3,17-dione) were 50-70 times lower than in the adult animal. The kinetic parameters and cofactor preference of the 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were determined in the cytosolic, microsomal and mitochondrial fractions of neonatal porcine testes.  相似文献   

11.
The pheromone binding protein 'pheromaxein' which binds the pheromonal 16-androstene steroids in the saliva of the male pig (boar), was degraded and lost its binding activity in saliva incubated in air for 72 h at 21 degrees C and 37 degrees C. However, pheromaxein and its binding activity were retained in saliva incubated for 168 h at 4 degrees C. When the 3H-labelled pheromones 5 alpha-androst-16-en-3 alpha-ol (3 alpha-androstenol), 5 alpha-androst-16-en-3-one (5 alpha-androstenone) and 5 alpha-androst-16-en-3 beta-ol (3 beta-androstenol) were incubated with boar saliva for 168 h at 21 degrees C, 3 alpha-androstenol was primarily converted to 5 alpha-androstenone and 5 alpha-androstenone to 3 beta-androstenol; 3 beta-androstenol was unchanged. Evidence was obtained for microorganisms being responsible for these steroid transformations.  相似文献   

12.
1. In one experiment [7alpha-(3)H]pregnenolone was infused continuously for 12min into the left spermatic artery of a sexually mature boar and blood was collected during this period by continuous drainage from the spermatic vein. After infusion, the testis was removed and immediately cooled to -196 degrees C. 2. From both the testicular tissue and the spermatic venous plasma, (3)H-labelled 16-unsaturated C(19) steroids were isolated and characterized and their radiochemical purity was established. 5alpha-Androst-16-en-3alpha- and 3beta-ol occurred mainly as sulphate conjugates and to a lesser extent as free steroids. Only traces of these alcohols occurred as glucosiduronate conjugates. 5alpha-Androst-16-en-3-one was found in the free (ether-extractable) fraction. 3. The isotope concentration of each of the (3)H-labelled 16-unsaturated C(19) steroids in testicular tissue was different from that in spermatic venous plasma. 4. The ratios of tritiated 5alpha-androst-16-en-3alpha- and 3beta-ol (free steroids) to their respective sulphate conjugates in the testicular tissue were less than the ratios of the same compounds in the spermatic venous plasma. The possibility that the sulphates are partially hydrolysed by testicular sulphatases before secretion is discussed. 5. In a second experiment, a continuous close-arterial infusion of [7alpha-(3)H]pregnenolone into the left testis was performed over a 200min period and all the urine that accumulated during the infusion was collected for analysis. 6. No (3)H-labelled 16-unsaturated C(19) steroids were detected in the urine as free steroids. Only a trace of 5alpha-androst-16-en-3alpha-ol was detected conjugated as glucosiduronate, whereas the corresponding 3beta-alcohol occurred mainly as glucosiduronate and to a lesser extent as sulphate. 7. The absence of 5alpha-androst-16-en-3beta-ol glucosiduronate in the spermatic venous blood and its presence in considerable amount in the urine may be attributed to hepatic glucuronyl transferase activity.  相似文献   

13.
Human semen was examined for the presence of 16-androstenols, 16-androstenones and androgens. Extracts were analysed by gas chromatography-mass spectrometry after derivatization of steroids under study. In a qualitative study, 5 alpha-androst-16-en-3 alpha- and 3 beta-ols, 5,16-androstadien-3 beta-ol and 5 alpha-androstan-3 beta-ol were detected in a semen pool A. Hydroxyl groups were converted to tert-butyldimethylsilyl ethers, the ions selected for monitoring being [M-57]+, consistent with loss of the tert-butyl group. For a more detailed quantitative study, a second semen pool B was used. In this case, all hydroxyl groups were converted to trimethylsilyl ethers, while oxo groups were not derivatized. As with semen pool A, separation of steroids was achieved using capillary gas chromatography with appropriate temperature programming. Quantification was carried out by mass spectrometry using selected ion monitoring of two significant ions and appropriate internal standards. The following steroids were identified at the concentrations indicated: 5 alpha-androst-16-en-3 alpha- and 3 beta-ols and 5,16-androstadien-3 beta-ol (concentration range, 0.5-0.7 ng/ml). 5 alpha-Androst-16-en-3-one and 4,16-androstadien-3-one were also present at levels of 0.7-0.9 ng/ml. Two androgens, testosterone and 5 alpha-dihydrotestosterone were found at concentrations of 0.5 and 0.3 ng/ml, respectively. These data, showing the presence of 16-androstenes and androgens in human semen, appear to be consistent with testicular formation of these steroids. The possible significance of the odorous 16-androstenes is discussed.  相似文献   

14.
Androstane and delta15-androstane analogues of brassinosteroids were synthesized from dehydroepiandrosterone. The key stage, hydroxylation of 17beta-acetoxyandrost-2-en-6-one double bond with OsO4, yielded the corresponding 2alpha,3alpha- and 2beta,3beta-diols. The target 2alpha,3alpha-isopropylidenedioxy-6,6-ethylenedioxy-5alpha-androst-15-en-17-one and its 2beta,3beta-isomer were obtained by dehydrosilylation of the corresponding silylene ethers with palladium acetate.  相似文献   

15.
Described herein are the chemical syntheses of a number of deuterated derivatives of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one. These include the [2,2,3 alpha,4,4,7,7,9 alpha,16,16-2H10]-, [7 alpha,9 alpha,16,16-2H4]-, [7,7,9 alpha,16,16-2H5]-, and [2,2,3 alpha,4,4-2H5]-analogs of the delta 8(14)-15-ketosterol. Also included are the syntheses of the 3 beta-acetate derivatives of the latter three deuterated analogs and of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one, and 5 alpha-cholest-8(14)-en-3 alpha-ol-15-one. Low resolution mass spectral data on these compounds and on 5 alpha-cholest-8(14)-en-15-one, 5 alpha-cholest-8(14)-en-3 beta-ol-15-one, 5 alpha-cholest-8(14)-en-3 alpha-ol-15-one, 3 beta-benzoyloxy-5 alpha-cholest-8(14)-en-15-one, and the trimethylsilyl ethers of the free sterols have been presented. The results of these studies, supplemented with high resolution mass spectral data on five of these compounds, have been used to evaluate the electron impact mass spectral fragmentation of the delta 8(14)-15-ketosterols and their derivatives. Also presented herein are the results of 1H, 2H, and 13C nuclear magnetic resonance studies of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one and its derivatives.  相似文献   

16.
1. The metabolism of [4-(14)C]pregnenolone in vitro by boar adrenocortical and testis tissue has been studied. 2. Boar testis tissue formed three labelled Delta(16)-steroids, 5alpha-androst-16-en-3alpha-ol, 5alpha-androst-16-en-3beta-ol and androsta-4,16-dien-3-one. In adrenal tissue very much smaller yields of the same metabolites were obtained. 3. Both tissues produced labelled progesterone, androst-4-ene-3,17-dione and testosterone in varying quantities. The amount of progesterone was about 120 times greater in the adrenal tissue. In testis tissue dehydroepiandrosterone was found only in small quantity. 4. A pathway is suggested for the biosynthesis of Delta(16)-steroids from pregnenolone in boar testis tissue. The possibility that progesterone may be an intermediate is discussed.  相似文献   

17.
The metabolism of plasma 5 alpha-androst-16-en-3-one (androstenone) was studied in two young boars weighing about 100 kg in which a single dose of tritiated androstenone was injected intravenously. The peripheral blood of one boar was continuously sampled for 6 h after injection; the total radioactivity per liter of plasma increased up to 14 min after the injection, and then declined rather slowly since plasma radioactivity was still measurable 7 days after injection. The metabolic clearance rate of androstenone was calculated to be about 80 000 liters per day. This quick disappearance of plasma androstenone was probably mainly due to storage in fatty tissue and, to a lesser extent, to catabolism into 5 alpha-androst-16-en-3 alpha-ol, 5 alpha-androst-16-en-3 beta-ol and particularly into unknown more polar compounds of which there were at least three. Radioactivity was mainly eliminated in the urine in the form of the same unknown polar compounds.  相似文献   

18.
Gelpi ME  Cadenas RA  Mosettig J  Zuazo BN 《Steroids》2002,67(3-4):263-267
Steroidal nucleoside analogs were synthesized starting from testosterone. By reduction of the oxime of 17 beta-hydroxy-androst-4-en-3-one (testosterone), a mixture of the two amino epimers of C-3 were obtained. The 3 alpha-amino-androst-4-en-17 beta-ol was crystallized in 73% yield and coupled with 5-amino-4,6-dichloropyrimidine to give 3 alpha-(5'-amino-4'-chloro-pyrimidin-6'-yl)amino-androst-4-en-17 beta-ol. This compound was treated with triethyl orthoformate in acid media to give the corresponding purinyl steroid adduct 3 alpha-(6'-chloro-purin-9'-yl)-androst-4-en-17 beta-ol in 98% yield. This substance, in turn, was converted with good yield into the 6'-thio, 6'-methylamino, and 6'-diethyl aminopurinyl derivatives through nucleophilic reactions at C-6 of the purine nucleus.  相似文献   

19.
1. The echinoderms Asterias rubens and Solaster papposus (Class Asteroidea) metabolize injected [4(-14)C]cholest-5-en-3beta-ol to produce labelled 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 2. Conversion of 5alpha-[4(-14)C]cholestan-3beta-ol into 5alpha-cholest-7-en-3beta-ol was demonstrated in A. Rubens. 3. Incubations of A. rubens with [4(-14)C]cholest-4-en-3-one resulted in the production of labelled 5alpha-cholestan-3-one, 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 4. [4(-14)C]Sitosterol was metabolized by A. rubens to give 5alpha-stigmastan-3beta-ol and 5alpha-stigmast-7-en-3beta-ol. 5. The significance of these results in relation to the presence of alpha7 sterols in starfish is discussed.  相似文献   

20.
Zhang H  Qiu Z 《Steroids》2006,71(13-14):1088-1090
5alpha-Androst-1-ene-3,17-dione (5) as a prodrug of 1-testosterone (4) was prepared in four steps from 17beta-Acetoxy-5alpha-androstan-3-one (stanolone acetate) (1) in high yield. Thus, stanolone acetate (1) was brominated in the presence of hydrogen chloride in acetic acid to give 17beta-acetoxy-2-bromo-5alpha-androstan-3-one (2), which underwent dehydrobromination using lithium carbonate as base with lithium bromide as an additive to give 17beta-acetoxy-5alpha-androst-1-en-3-one (3) in almost quantitative yield with 97% of purity. Compound (3) was hydrolyzed with sodium hydroxide to give 17beta-hydroxy-5alpha-androst-1-en-3-one (4,1-testosterone), which was oxidized with chromium trioxide to afford 5alpha-androst-1-ene-3,17-dione (5). The overall yield of 5 was 78.2% with purity of 99%. In this method, the formation of 4-ene was diminished when 1-ene was introduced, and its mechanism was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号