首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It is known from experiments with bacteria and eukaryotic viruses that readthrough of termination codons located within the open reading frame (ORF) of mRNAs depends on the availability of suppressor tRNA(s) and the efficiency of termination in cells. Consequently, the yield of readthrough products can be used as a measure of the activity of polypeptide chain release factor(s) (RF), key components of the translation termination machinery. Readthrough of the UAG codon located at the end of the ORF encoding the coat protein of beet necrotic yellow vein furovirus is required for virus replication. Constructs harbouring this suppressible UAG codon and derivatives containing a UGA or UAA codon in place of the UAG codon have been used in translation experiments in vitro in the absence or presence of human suppressor tRNAs. Readthrough can be virtually abolished by addition of bacterially-expressed eukaryotic RF1 (eRF1). Thus, eRF1 is functional towards all three termination codons located in a natural mRNA and efficiently competes in vitro with endogenous and exogenous suppressor tRNA(s) at the ribosomal A site. These results are consistent with a crucial role of eRF1 in translation termination and forms the essence of an in vitro assay for RF activity based on the abolishment of readthrough by eRF1.  相似文献   

4.
5.
M A Santos  G Keith    M F Tuite 《The EMBO journal》1993,12(2):607-616
From in vitro translation studies we have previously demonstrated the existence of an apparent efficient UAG (amber) suppressor tRNA in the dimorphic fungus Candida albicans (Santos et al., 1990). Using an in vitro assay for termination codon readthrough the tRNA responsible was purified to homogeneity from C.albicans cells. The determined sequence of the purified tRNA predicts a 5'-CAG-3' anticodon that should decode the leucine codon CUG and not the UAG termination codon as originally hypothesized. However, the tRNA(CAG) sequence shows greater nucleotide homology with seryl-tRNAs from the closely related yeast Saccharomyces cerevisiae than with leucyl-tRNAs from the same species. In vitro tRNA-charging studies demonstrated that the purified tRNA(CAG) is charged with Ser. The gene encoding the tRNA was cloned from C.albicans by a PCR-based strategy and DNA sequence analysis confirmed both the structure of the tRNA(CAG) and the absence of any introns in the tRNA gene. The copy number of the tRNA(CAG) gene (1-2 genes per haploid genome) is in agreement with the relatively low abundance (< 0.5% total tRNA) of this tRNA. In vitro translation studies revealed that the purified tRNA(CAG) could induce apparent translational bypass of all three termination codons. However, peptide mapping of in vitro translation products demonstrated that the tRNA(CAG) induces translational misreading in the amino-terminal region of two RNA templates employed, namely the rabbit alpha- and beta-globin mRNAs. These results suggest that the C.albicans tRNA(CAG) is not an 'omnipotent' suppressor tRNA but rather may mediate a novel non-standard translational event in vitro during the translation of the CUG codon. The possible nature of this non-standard translation event is discussed in the context of both the unusual structural features of the tRNA(CAG) and its in vitro behaviour.  相似文献   

6.
An in vitro system to assay translational readthrough of the UAG termination codon at the murine leukemia virus (MuLV) gag-pol junction was developed by using rabbit reticulocyte lysates programmed by SP6-generated Moloney MuLV gag-pol mRNA. Under conditions in which the suppressor activity of the lysate was dependent on addition of tRNA, it could be shown that readthrough synthesis was stimulated to approximately the same extent by equivalent amounts of tRNA from MuLV-infected and uninfected NIH 3T3 cells. Analysis of glutamine tRNA, which mediates suppression in vivo, showed that the level of glutamine acceptor activity and the chromatographic profile of glutamine isoacceptors were unchanged following virus infection. On the basis of these results, we conclude that the suppressor tRNA occurs normally within the tRNA population of uninfected cells and need not be induced in response to virus infection.  相似文献   

7.
8.
9.
J P Lin  M Aker  K C Sitney  R K Mortimer 《Gene》1986,49(3):383-388
A 2.4-kb fragment of DNA isolated from the Saccharomyces cerevisiae genome was found to suppress amber mutations when its carrier plasmid was present in high copy number. A 1.2-kb subclone of this fragment was sufficient to confer suppressor activity. Sequencing has established that this fragment carries a normal glutamine tRNA gene. Deletion of this tRNA gene from the subclone resulted in the loss of suppressor activity. The tRNAGln has the anticodon CUG that normally recognizes the glutamine codon CAG. We propose that suppression occurs via an inefficient readthrough of the UAG amber stop codons during translation. Such readthrough requires wobble in the first position of the codon.  相似文献   

10.
We previously reassigned the amber UAG stop triplet as a sense codon in Escherichia coli by expressing a UAG-decoding tRNA and knocking out the prfA gene, encoding release factor 1. UAG triplets were left at the ends of about 300 genes in the genome. In the present study, we showed that the detrimental effect of UAG reassignment could be alleviated by increasing the efficiency of UAG translation instead of reducing the number of UAGs in the genome. We isolated an amber suppressor tRNA(Gln) variant displaying enhanced suppression activity, and we introduced it into the prfA knockout strain, RFzero-q, in place of the original suppressor tRNA(Gln). The resulting strain, RFzero-q3, translated UAG to glutamine almost as efficiently as the glutamine codons, and it proliferated faster than the parent RFzero-q strain. We identified two major factors in this growth enhancement. First, the sucB gene, which is involved in energy regeneration and has two successive UAG triplets at the end, was expressed at a higher level in RFzero-q3 than RFzero-q. Second, the ribosome stalling that occurred at UAG in RFzero-q was resolved in RFzero-q3. The results revealed the importance of "backup" stop triplets, UAA or UGA downstream of UAG, to avoid the deleterious impact of UAG reassignment on the proteome.  相似文献   

11.
Pyrrolysine (Pyl) is co-translationally inserted into a subset of proteins in the Methanosarcinaceae and in Desulfitobacterium hafniense programmed by an in-frame UAG stop codon. Suppression of this UAG codon is mediated by the Pyl amber suppressor tRNA, tRNA(Pyl), which is aminoacylated with Pyl by pyrrolysyl-tRNA synthetase (PylRS). We compared the behavior of several archaeal and bacterial PylRS enzymes towards tRNA(Pyl). Equilibrium binding analysis revealed that archaeal PylRS proteins bind tRNA(Pyl) with higher affinity (K(D)=0.1-1.0 microM) than D. hafniense PylRS (K(D)=5.3-6.9 microM). In aminoacylation the archaeal PylRS enzymes did not distinguish between archaeal and bacterial tRNA(Pyl) species, while the bacterial PylRS displays a clear preference for the homologous cognate tRNA. We also show that the amino-terminal extension present in archaeal PylRSs is dispensable for in vitro activity, but required for PylRS function in vivo.  相似文献   

12.
When RNA isolated from the Drosophila melanogaster alcohol dehydrogenase (ADH) negative mutant CyOnB was translated "in vitro" in the presence of yeast opal suppressor tRNA, a wild type size ADH protein was obtained in addition to the mutant gene product. This identifies the CyOnB mutant as an opal (UGA) nonsense mutant. From the molecular weight of the mutant protein, and from the known sequence of the ADH gene (Benyajati et al., Proc.Natl.Acad.Sci. USA 78, 2717-2721, 1981), we conclude that the tryptophan codon UGG in position 234 has been changed into a UGA nonsense codon in the CyOnB mutant. Furthermore, we show that the UAA stop codon of the wild type ADH gene is resistant to suppression by a yeast ochre suppressor tRNA. This is in contrast to the high efficiency of suppression of the CyOnB UGA nonsense codon, despite an almost identical codon context.  相似文献   

13.
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.  相似文献   

14.
Six tRNA(Leu) isoacceptors from yellow lupin seeds were purified, sequenced, and their readthrough properties over the UAG stop codon were tested using TMV RNA as a messenger. The tested tRNAs(Leu) did not show amber suppressor activity. The partial structure of tRNA(Gln), a minor species in yellow lupin, was also determined. Comparison of the nucleotide sequence of all known isoacceptors of tRNA(Tyr), tRNA(Gln) and tRNA(Leu) from plants, mammals and ciliates enabled us to find general structural requirements for tRNA to be a UAG suppressor. From the partial sequence of lupin tRNA(Gln) we suggest that it will have readthrough properties.  相似文献   

15.
Recently, it was shown that wild-type glutamine tRNAs in yeast cause low-level nonsense suppression that can be enhanced by increasing glutamine tRNA gene copy number. In order to investigate glutamine tRNA behavior further, anticodon mutations that confer nonsense suppression were identified in yeast sup70 gene, which codes for glutamine tRNA(CAG). In this study we show that suppressors derived by mutation severely limit growth such that suppressor-bearing spores germinate but arrest cell division at approximately the 50 cell stage. Analysis of a sup70 deletion was used to establish that growth limitation results from loss of wild-type glutamine tRNA(CAG) function. By exploiting the growth inhibition of sup70 alleles, some exceptional codon recognition properties of glutamine tRNAs were revealed. Our results indicate that amber suppressor glutamine tRNA(UAG) can translate 5'-CAG-3' glutamine codons with low efficiency in the presence of an A/C mismatch at the first position of the codon, suggesting that reading may occur at a low level by a two-out-of-three reading mechanism. In addition, when glutamine tRNA(CAA) is over-expressed in vivo, it translates 5'-CAG-3' codons using a mechanism that resembles prokaryotic-like U/G wobble, which normally does not occur in yeast. Our studies also suggest that the yeast glutamine tRNA suppressors could potentially be exploited to express ciliated protozoan genes that normally contain internal 5'-UAG-3' and 5'-UAA-3' codons.  相似文献   

16.
17.
The tRNAs specified by the wild type and amber suppressor alleles of the Escherichia coli supD gene have been identified, and their primary structures determined. The sequences differ by a single nucleotide in the middle of the anticodon. A CUA anticodon allows the suppressor tRNA to read the UAG stop codon; the CGA anticodon in the minor serine tRNA species from which the suppressor is derived is specific for the serine codon UCG.  相似文献   

18.
The number of different tRNA species in Saccharomyces cerevisiae known to be capable of suppressing termination of translation at UAG, UAA, and UGA codons is limited to those which insert tyrosine, leucine, and serine. Suppressor tRNAs that insert other amino acids, even those whose anticodons differ from the expected recognition sequences for nonsense codons by a single nucleotide, have never been identified via classical genetic analysis. We have used site-directed mutagenesis to convert the anticodon of a cloned tRNATrp gene from CCA to CTA with the expectation that this gene would produce tRNA molecules capable of interacting with the UAG terminator codon. We show that this form of the gene can be transcribed and spliced in vitro to produce mature tRNA with the expected base sequence. The putative suppressor gene has been introduced into several S. cerevisiae host strains using the centromere vector YCp19. Efficient suppression of amber mutations met8-1, tyr7-1, and lys2-801 results from the presence of the CTA form of tDNATrp. Two UAA mutants, leu2-1 and ade2-101, and the UGA marker his4-260 are not suppressed.  相似文献   

19.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号