首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membranes were isolated from an ascites hepatoma, AH 130 FN, a free-cell type subline of AH 130, by the fluorescein mercuric acetate (FMA) method. Glycopeptides and mucopolysaccharides were prepared from the membranes by pronase digestion then fractionated chromatographically and electrophoretically. Isolated fractions were analyzed for amino acid and carbohydrate compositions. The results were compared with those for corresponding fractions from AH 66 and AH 130 ((1974) J. Biochem. 76, 319-333; (1975) ibid., 78, 863-872). The fraction excluded from Sephadex G-50 contained mucopolysaccharides and a series of glycopeptides. The mucopolysaccharides were identified as chondroitin sulfate A on the basis of their chemical composition, electrophoretic behavior on cellulose acetate and digestibility with chondroitinase AC [EC 4.2.2.5]. This contrasts with previous findings that mucopolysaccharides from the corresponding fractions from AH 130 and AH 66 were heparan sulfate. The chemical composition of the glycopeptides, which showed high contents of threonine, serine, galactose, galactosamine, glucosamine, and sialic acid, indicated the presence of glycopeptides with O-glycosidic linkages. The glycopeptides also contained a small but significant amount of aspartic acid, suggesting that N-glycosidic glycopeptides were also contained in this fraction. The fraction included in Sepnadex G-50 contaoned N-glycosidic glycopeptides as major components, since the carbohydrate moieties were composed of fucose, galactose, mannose, glucosamine, sialic acid, and a smaller amount of galactosamine. The presence of galactosamine suggested that O-glycosidic glycopeptides were present as minor components. Glycopeptides with both O- and N-glycosidic linkages were isolated from AH 130, but not from AH 66.  相似文献   

2.
3.
A proteoglycan was isolated from plasma membranes prepared from AH 66 cells by the following procedure. The plasma membranes were isolated from cells according to the method devised by Funakoshi and Yamashina (1976) J. Biochem. 80, 1185-1193), then the membranes were made lipid-free. The lipid-free membranes were solubilized with 5 mM sodium phosphate buffer, pH 7.0, containing 0.5% sodium dodecyl sulfate (SDS), then the solution was fractionated on a Sepharose CL 6B column. The proteoglycan eluted near the void volume fraction was further purified by repeated precipitation with cetylpyridinium chloride (CPC). The proteoglycan isolated was homogeneous on electrophoresis on a cellulose acetate strip and was identified as proteoheparan sulfate. The preparation contained 10.6% protein, its amino acid composition being characterized by high contents of glutamic acid, aspartic acid, proline, glycine, threonine, and serine.  相似文献   

4.
A proteoglycan isolated from plasma membranes of an ascites hepatoma, AH 66, was characterized structurally. The glycosaminoglycan was obtained by alkali treatment and was identified as heparan sulfate. It was essentially the only type of carbohydrate chain attached to the core protein. The identification was based on chemical analysis, electrophoresis, and digestibility with heparitinase from Flavobacterium heparinum. Analysis of neutral sugars of the proteoglycan by mass fragmentography indicated the presence of xylose and galactose which should be involved in the linkage region between a heparan sulfate chain and the core protein. The weight-average molecular weights of the proteoglycan and its heparan sulfate chain were determined to be 71,000 and 21,000, respectively, by meniscus depletion equilibrium centrifugation. The latter value was in good agreement with those obtained by chemical analysis and by gel filtration. From these values for molecular weight and the protein content of the proteoglycan (10.6%), the molecular weight of the core protein was estimated to be 7500. On the basis of these molecular parameters, it was proposed that three heparan sulfate chains on average are linked to the core protein.  相似文献   

5.
6.
7.
8.
Plasma membranes were isolated from AH 66 cells, some of which had been labeled with [14C]glucosamine, by the following procedure: homogenization of cells which had been hardened by treatment with Zn ions, fractionation of the homogenate by sucrose density gradient centrifugation and purification of the membranes by partition in an aqueous two-phase polymer system. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) of the plasma membranes and subsequent staining of the gel for protein and carbohydrate, and determination of radioactivity on the gel eluates indicated the presence of at least 10 bands of glycoproteins. The major band contained 27% of the total radioactivity incorporated into the plasma membranes and was most heavily stained with the periodate-Schiff reagent. To isolate the major glycoprotein, the membranes were solubilized with 0.6 M lithium diiodosalicylate containing 0.5% Triton X-100, then the solution was treated with phenol. The major glycoprotein, obtained in the aqueous phase, was further purified mainly by repeated chromatographies on Sepharose 6B. The purified preparation was practically homogeneous on SDS-polyacrylamide gel electrophoresis, as judged by radioactivity determination and by carbohydrate staining, but contained small amounts of carbohydrate-free proteins. The major glycoprotein had an apparent molecular weight of 160,000, as determined by SDS-polyacrylamide gel electrophoresis. The final preparation contained about 44% carbohydrate on a weight basis, and the carbohydrate moiety was composed of glucosamine, galactosamine, galactose, mannose, fucose, and sialic acid. This composition indicates that the major glycoprotein contains both N- and O-glycosidically linked oligosaccharide moieties.  相似文献   

9.
Two types of ascites hepatoma cells, AH 66 and AH 130 FN, were treated with trypsin to observe the release of complex carbohydrates constituting the plasma membranes. From AH 66 cells, mucopolysaccharide (heparan sulfate) was preferentially released. From AH 130 FN cells, N-glycosidic glycopeptides were preferentially released whereas no mucopolysaccharide (chondroitin sulfate A) was released.  相似文献   

10.
Alkaline phosphatase was purified from plasma membranes of rat ascites hepatoma AH-130, the homogenate of which had 50-fold higher specific activity than that found in the liver homogenate. The presence of Triton X-100, 0.5%, was essential to avoid its aggregation and to stabilize its activity. The purified enzyme, a glycoprotien, was homogeneous in polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a protein molecular weight of 140,000. The addition of beta-mercaptoethanol caused the dissociation of the alkaline phosphatase into two subunits of identical molecular weight, 72,000. Isoelectric focusing revealed that the pI of this enzyme is 4.7. The pH optimum for the purified enzyme was 10.5 or higher with p-nitrophenylphosphate, and slightly lower pH values (pH 9.5--10.2) were obtained when other substrates were used. Of the substrates tested, p-nitrophenylphosphate (Km-0.3 mM) was most rapidly hydrolyzed. Vmax values of other substrates relative to that of p-nitrophenylphosphate were as follows; beta-glycerophosphate, 76%; 5'-TMP, 82%; 5'-AMP, 62%; 5'-IMP, 43%; glucose-6-phosphate, 39%; ADP, 36% and ATP, 15%. More than 90% of the activity of the purified enzyme was irreversibly lost when it was heated at 55 degrees C for 30 min, or exposed either to 10 mM beta-mercaptoethanol for 10 min to 3 M urea for 30 min, or to an acidic pH below pH 5.0 for 2 h. Of the effects by divalent cations, Mg2+ activated the enzyme by 20% whereas Zn2+ strongly inhibited it by 95% at 0.5 mM. EDTA at higher than 1 mM inactivated the enzyme irreversibly, although the effect of EDTA at lower than 0.1 mM was reversible by the addition of divalent cations, particularly by Mg2+. The enzyme was most strongly inhibited by L-histidine among the amino acids tested, and also strongly inhibited by imidazole. These results suggest that alkaline phosphatase of rat hepatoma AH-130 is very similar to that of rat liver in most of the properties reported so far.  相似文献   

11.
The membrane-bound UDP-GalNAc:polypeptide N-acetylgalactosamine transferase from an ascites hepatoma, AH 66, has been purified 48,100-fold, mainly by affinity chromatography in aqueous Triton X-100 on apomucin (deglycosylated bovine submaxillary mucin) coupled to Sepharose. The purified preparation behaved homogeneously on gel filtration on Sephadex G-150 in aqueous Triton X-100 and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of about 55,000. The enzyme requires Mn2+, and only UDP-GalNAc served as a sugar donor. Apomucin, A1 protein, kappa-casein, apofetuin, and apoantifreeze glycoproteins served as acceptors, but the rate and amount of the transfer varied considerably from one acceptor to another. The transfer reaction terminated at the level of glycosylation of from only a few to at most about 40% of the serine plus threonine residues from which mucin-type oligosaccharides had been removed. This indicates that the transferase requires a certain conformation surrounding the acceptor site, but suggests also that a special mechanism may be functioning in vivo for frequent glycosylation of the abundant serine plus threonine residues of mucins. Lacto-N-fucopentaose I, ceramide di- and trihexosides, and globoside were not acceptors.  相似文献   

12.
The optimal condition for the rat DNA polymerase beta activity with (rA)n . (dT)12-18 as a template-primer was determined. The activity was remarkably affected by the concentration of the primer, (dT)12-18' and the mixing ratio of (dT)12-18 to (rA)n. DNA polymerase beta requires higher primer concentration (Km = 11.1 microM with respect to 3'-OH of the primer) than DNA polymerase gamma (Km = 0.04 microM) or oncornaviral DNA polymerase (Km = 0.08 microM) and the enzyme represented the maximum activity in the base ratio of 2:1 with (dT)12-18 and (rA)n suggesting the difference in reaction mechanisms of these enzymes. Under the optimized conditions, the specific activity of the near homogeneous preparation of DNA polymerase beta was 1,000,000 units per mg protein.  相似文献   

13.
A simple method is described for the isolation and characterization of plasma membranes from calf thymocytes. The procedure involves extraction of thymocytes in a hypotonic medium containing borate and EDTA. Membrane ghosts, obtained by centrifugation of the cell lysate, are purified by passage through a column containing glass beads. The purity of plasma membranes was checked by chemical analysis, by assay of marker enzymes and also by electron microscopy. Polyacrylamide gel electrophoresis of the calf thymocyte plasma membrane produced a number of protein bands as well as a major band which stained for carbohydrate. The method is rapid and could be applied to isolate plasma membranes from nucleated cells of various types in large quantities.  相似文献   

14.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

15.
16.
Heparitinase [EC 4.2.2.8, heparitin sulfate lyase] was prepared from an extract of cultured cells of Flavobacterium heparinum. Purification of the enzyme was achieved by repeating the hydroxyapatite column chromatography. The enzyme was used to degrade heparan sulfate occurring on the surfaces of ascites hepatoma cells, AH 66. From the supernatant of the enzyme-treated cells, breakdown products from heparan sulfate could be detected by paper chromatography. The heparitinase was found to be more effective than trypsin in removing heparan sulfate from the cells. Furthermore, on analyzing glycosaminoglycans and glycopeptides from the enzyme-treated cells and control cells, it was concluded that heparan sulfate was exclusively present on the cell surface and accessible to the heparitinase whereas other cell surface complex carbohydrates remained intact.  相似文献   

17.
A new type of fucose-containing glycolipid exhibiting blood group H activity was isolated from rat ascites hepatoma cell AH 7974F. As a result of studying its structure by partial acid hydrolysis, enzymatic degradation and immuno-precipitation reaction, the structure was tentatively proposed as Fuc(1 → 2)Gal(1 → 3)GalNAc(1 → 4)Gal(1 → 4)Glc(1 → 1)Cer.  相似文献   

18.
The purity of horseradish peroxidase isoenzyme C was demonstrated using isoelectric focusing, polyacrylamide gel electrophoresis at two pH values and cellulose acetate electrophoresis at two pH values. The glycopeptides obtained upon trypsin digestion were isolated using the plant lectin, concanavalin A, and were resolved using paper electrophoresis. The carbohydrate content of the native peroxidase was 86% accounted for by the carbohydrate content of the glycopeptides thus suggesting little loss of carbohydrate during glycopeptide isolation and purification. In each of the seven glycopeptides isolated glucosamine was associated with asparagine, thus suggesting the carbohydrate chains are covalently bound to the peptide chain through N-glycosidic linkages. The purity of each glycopeptide was demonstrated by the sequential release of single amino acid residues by Edman degradation. As six glycopeptides had unique amino acid sequences, it was concluded that the carbohydrate prosthetic group was distributed in at least six units along the protein backbone. Five glycopeptides possessed the amino acid sequence about the point of carbohydrate attachment of Asn-X-(Ser, Thr) where X is any amino acid. The size of the carbohydrate units ranged from 1600 to 3000 daltons. The predominant carbohydrate residues in each glycopeptide were mannose and glucosamine with lesser and varying amounts of fucose, xylose, and arabinose. There was no apparent correlation of the carbohydrate composition with the amino acid sequence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号