首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astaxanthin additions to animal diets predominantly serve as colorization aid to satisfy consumer expectations and desire for a consistent product with familiar coloration, e.g. the characteristic pink colorization of the flesh of species being produced by aquaculture. The heterobasidiomycetous yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous) can be used as natural feed source of astaxanthin. However, currently, the majority of astaxanthin used for the feed market is produced by chemical synthesis. We present a further step in direction of a competitive production of natural astaxanthin in an optimized bioprocess with non-genetically modified Phaffia rhodozyma. After medium optimization AXJ-20, a mutant strain of P. rhodozyma wild-type strain ATCC 96594, was able to grow to a cell dry weight concentration of over 114 g per kg of culture broth in a fed-batch process. In this bioprocess, where pH was lowered from 5.5 to 3.5 during the maturation phase, AXJ-20 produced the highest value reported for astaxanthin production with P. rhodozyma up to now: 0.7 g astaxanthin per kg of culture broth with a space-time-yield of 3.3 mg astaxanthin per kg of culture broth per hour. Lowering the pH during the bioprocess and increasing trace element and vitamin concentrations prevented loss of cell dry weight concentration in the maturation phase and proved to be critical for astaxanthin concentration and purity.  相似文献   

2.
Mutagenic treatment with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) inPhaffia rhodozyma generated 15 mutants with a wide diversity of color variants ranging from white to dark red. Characterization of the mutants by absorption spectra, TLC and HPLC was performed. Two categories could be distinguished: astaxanthin hyperproducing and astaxanthin hypoproducing mutants. Hyperproducing mutants exhibited considerable increases in astaxanthin content whereas hypoproducing mutants showed higher β-carotene contents than the wild-type strain. The characterization of carotenoid mutants inP. rhodozyma could contribute to the knowledge of the biosynthetic pathway of astaxanthin production of this microorganism.  相似文献   

3.
The resistance to killing by free radicals of two mutants ofPhaffia rhodozyma was determined. Mutant 5–7 did not produce astaxanthin but produced β-carotene, while mutant 3–4 did not produce any carotenoid pigments. The resistance of mutant 5–7 was the same as that of the wild type but mutant 3–4 was rapidly killed. Carotenoid pigments increased the resistance to killing by free radicals. We investigated the effects of free radicals, generated by H2O2 and Fe2+ added to the medium, on wild-type cells and mutants ofP. rhodozyma. Unpigmented mutants of basidiomycetous yeasts (Rhodotorula spp. and others) are more susceptible to killing by UV-irradiation than the pigmented, wild-type strains. Therefore, we investigated the effect of free radicals on a similar basidiomycetous yeast,P. rhodozyma, a species of economic importance, in the biological production of astaxanthin.  相似文献   

4.
In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.  相似文献   

5.
A moderate-temperature mutant strain of the yeast Phaffia rhodozyma, termed MK19, was selected by 1-methyl-3-nitro-1-nitrosoguanidine (NTG) and Co60 mutagenesis. MK19 displayed fast cell growth and elevated astaxanthin content at 25°C, whereas optimal temperature for growth and astaxanthin synthesis of wild-type P. rhodozyma was 17–21°C. Optimized astaxanthin yield for MK19 after 4 days culture in shaking flask at 25°C, determined by response surface methodology, was 25.8 mg/l, which was 17-fold higher than that of the wild-type. MK19 was tolerant of high initial concentration of glucose (>100 g/l) in optimized medium. Total fatty acid content of MK19 was much lower than that of the wild-type. Acetyl-CoA is a common precursor of fatty acid and terpenoid biosynthesis, and it is possible that decreased fatty acid synthesis results in transfer of acetyl-CoA to the carotenoid biosynthetic pathway. Our results indicate that astaxanthin content is negatively correlated with fatty acid content in P. rhodozyma. Nutrient analysis showed that MK19 cells are enriched in lysine, vitamin E, and other rare nutrients, and have potential application as fish food without nutritional supplementation. This moderate-temperature mutant strain is a promising candidate for economical industrial-scale production.  相似文献   

6.
The astaxanthin synthesis in the yeast Phaffia rhodozyma was shown to depend on the rate of growth occurring in the first two days of cultivation. The growth rate of the yeast culture studied was preset by the cultivation conditions, among which the C : N ratio was decisive. The intense anabolic processes coupled with active culture growth during the first 24 h significantly inhibited the synthesis of the key enzymes involved in astaxanthin synthesis, which led to a marked decrease in the carotenoid production. It was demonstrated that, for the maximum yield of astaxanthin to be obtained from 1 l of nutrient medium, it is necessary to carry out cultivation, beginning with the first day, at a growth rate significantly lower than µmax. The optimum budding rate of the mutant strain Ph. rhodozyma VKPM Y-2409 consistent with the maximum astaxanthin synthesis was determined. The specific astaxanthin productivity of the strain studied was about 7.0 mg/g of dry biomass at a budding rate of <0.5.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 751–757.Original Russian Text Copyright © 2004 by Vustin, Belykh, Kishilova.  相似文献   

7.
The wild strain and the astaxanthin-overproducing mutant strain 25–2 of Phaffia rhodozyma were analyzed in order to assess their ability to grow and synthesize astaxanthin in a minimal medium composed of g L−1: KH2PO4 2.0; MgSO4 0.5; CaCl2 0.1; urea 1.0 and supplemented with date juice of Yucca fillifera as a carbon source (yuca medium). The highest astaxanthin production (6170 μg L−1) was obtained at 22.5 g L−1 of reducing sugars. The addition of yeast extract to the yuca medium at concentrations of 0.5–3.0 g L−1 inhibited astaxanthin synthesis. The yuca medium supported a higher production of astaxanthin, 2.5-fold more than that observed in the YM medium. Journal of Industrial Microbiology & Biotechnology (2000) 24, 187–190. Received 14 July 1999/ Accepted in revised form 02 December 1999  相似文献   

8.
Summary Growth of an astaxanthin hyper-producing strain of Phaffia rhodozyma on sucrose is accompanied by the accumulation of glucose and fructose in the medium due to the limited capacity of the corresponding monosaccharide transport system or systems. This is accompanied by the production of the trisaccharide neokestose by transglycosylation reactions.  相似文献   

9.
Mutagenesis of Phaffia rhodozyma with NTG yielded a mutant with an astaxanthin content of 1688 g (g dry biomass)-1, a cell yield coefficient of 0.47 on glucose and a maximum specific growth rate of 0.12 h-1. Re-mutation of the mutant decreased the cell yield and maximum specific growth rate but increased the astaxanthin content. The use of mannitol or succinate as carbon sources enhanced pigmentation, yielding astaxanthin contents of 1973 g g-1 and 1926 g g-1, respectively. The use of valine as sole nitrogen source also increased astaxanthin production, but severely decreased the maximum specific growth rate and cell yield coefficient. The optimum pH for growth of P. rhodozyma was between pH 4.5 and 5.5, whereas the astaxanthin content remained constant above pH 3.  相似文献   

10.
Natural carbon sources, such as those present in cane sugar molasses and grape juice, promote the synthesis of astaxanthin in different Phaffia rhodozyma yeasts. One of these, coconut milk, has a very rich nutrient composition. The aim of this work was to investigate the utility of coconut milk as sole source of energy for astaxanthin pigment production by P. rhodozyma strains. Currently, coconut pulp is widely used in industrial processes in Mexico for the production of shampoos, candies, food, etc. However, coconut milk is a waste product. We show that coconut milk enhances astaxanthin production. The fermentation yielded 850 g/g yeast with the NRRL-10921 wild-type strain and 1,850 g/g yeast with the mutated R1 strain. Production was better than reported results employing other natural carbon sources.  相似文献   

11.
Temperature and pH had only a slight effect on the astaxanthin content of a Phaffia rhodozyma mutant, but influenced the maximum specific growth rate and cell yield profoundly. The optimum conditions for astaxanthin production were 22°C at pH 5.0 with a low concentration of carbon source. Astaxanthin production was growth-associated, and the volumetric astaxanthin concentration gradually decreased after depletion of the carbon source. The biomass concentration decreased rapidly during the stationary growth phase with a concomitant increase in the cellular content of astaxanthin. Sucrose hydrolysis exceeded the assimilation rates of D-glucose and D-fructose and these sugars accumulated during batch cultivation. D-Glucose initially delayed D-fructose uptake, but D-fructose utilization commenced before glucose depletion. In continuous culture, the highest astaxanthin content was obtained at the lowest dilution rate of 0.043 h–1. The cell yield reached a maximum of 0.48 g cells·g–1 glucose utilized between dilution rates of 0.05 h–1 and 0.07 h–1 and decreased markedly at higher dilution rates. Correspondence to: J. C. Du Preez  相似文献   

12.
Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) and Haematococcus pluvialis are known as the major prominent microorganisms able to synthesize astaxanthin natural pigment. Important research efforts have been made to determine optimal conditions for astaxanthin synthesis. When the focus is on astaxanthin production, the maximal reported value of 9.2 mg/g cell is obtained within H. pluvialis grown on BAR medium, under continuous illumination (345 μmol photon m−2 s−1) and without aeration. Whereas fermentation by mutated R1 yeast grown on coconut milk produced 1,850 μg/g yeast. However, when looking at astaxanthin productivity, the picture is slightly different. The figures obtained with P. rhodozyma are rather similar to those of H. pluvialis. Maximal reported values are 170 μg/g yeast per day with a wild yeast strain and 370 μg/g yeast per day with mutated R1 yeast. In the case of H. pluvialis, maximal values ranged from 290 to 428 μg/g cell per day depending on the media (BG-11 or BAR), light intensity (177 μmol photon m−2 s−1), aeration, etc. The main aim of this work was to examine how astaxanthin synthesis, by P. rhodozyma and H. pluvialis, could be compared. The study is based on previous works by the authors where pigment productions have been reported.  相似文献   

13.
In this study, atmospheric and room temperature plasma and ultraviolet mutagenesis was studied for astaxanthin overproducing mutant. Phaffia rhodozyma mutant Y1 was obtained from the selection plate with 120 μmol/L diphenylamine as selection agent, and its carotenoid concentration and content were 54.38 mg/L and 5.38 mg/g, which were 19.02 % and 21.20 % higher than that of the original strain, respectively. Sugarcane bagasse hydrolysate was used for astaxanthin production by mutant Y1 at 22 °C and 220 rpm for 96 h, and the biomass and carotenoid concentration reached 12.65 g/L and 88.57 mg/L, respectively. Ultrasonication and cellulase were used to break cell wall and the parameters were optimized, achieving an astaxanthin extraction rate of 96.01 %. The present work provided a novel combined mutagenesis method for astaxanthin overproducing mutant and a green cell wall disruption process for astaxanthin extraction, which would play a solid foundation on the development of natural astaxanthin.  相似文献   

14.
The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.  相似文献   

15.
16.
Summary Production of cell mass and astaxanthin by the yeast Phaffia rhodozyma was inhibited by saponin. The inhibition was partially reversed by oleic and linoleic acids and by ergosterol and cholesterol, thereby suggesting a possible interference of saponin with the yeast cell membrane.  相似文献   

17.
Phaffia rhodozyma was isolated by Herman Phaff in the 1960s, during his pioneering studies of yeast ecology. Initially, the yeast was isolated from limited geographical regions, but isolates were subsequently obtained from Russia, Chile, Finland, and the United States. The biological diversity of the yeast is more extensive than originally envisioned by Phaff and his collaborators, and at least two species appear to exist, including the anamorph Phaffia rhodozyma and the teleomorph Xanthophyllomyces dendrorhous. The yeast has attracted considerable biotechnological interest because of its ability to synthesize the economically important carotenoid astaxanthin (3,3-dihydroxy-, -carotene-4,4-dione) as its major pigment. This property has stimulated research on the biology of the yeast as well as development of the yeast as an industrial microorganism for astaxanthin production by fermentation. Our laboratory has isolated several mutants of the yeast affected in carotenogenesis, giving colonies a vivid array of pigmentation. We have found that nutritional and environmental conditions regulate astaxanthin biosynthesis in the yeast, and have demonstrated that astaxanthin protects P. rhodozyma from damage by reactive oxygen species. We proposed in the 1970s that P. rhodozyma could serve as an economically important pigment source in animal diets including salmonids, lobsters, and the egg yolks of chickens and quail, in order to impart characteristic and desirable colors. Although P. rhodozyma/Xanthomyces dendrorhous has been studied by various researchers for nearly 30 years, it still attracts interest from yeast biologists and biotechnologists. There is a bright and colorful outlook for P. rhodozyma/X. dendrorhous from fundamental and applied research perspectives.  相似文献   

18.
Summary Alfalfa residual juice (ARJ) supported good growth of the yeast Phaffia rhodozyma but formation of astaxanthin was inhibited. Supplementary nutrients did not reverse the inhibition, indicating that the the juice probably contained some inhibitor of astaxanthin biosynthesis. Six strains of P. rhodozyma were tested and found to be susceptible to the inhibitory effects of the juice. Concentrations of ARJ above 1.25% (v/v) were inhibitory to pigmentation of the yeast. Above approximately 3.7%, total inhibition of astaxanthin formation was observed but some chromogenic components of the juice were adsorbed on Phaffia cells and appeared as artefacts in astaxanthin analyses. Phaffia biomass produced in ARJ showed greater susceptibility to autolysis than that produced in a peptone-glucose-salts medium. Supplementation of ARJ with glucose enhanced yield of cell mass and minimised the autolytic phenomenon, and is potentially useful for producing Phaffia biomass for use as a source of single cell protein.Unsupplemented brewer's malt wort and molasses, separately and in a suitable combination, were compared with ARJ and were found suitable for growth and pigmentation of P. rhodozyma.  相似文献   

19.
The red-pigmented fermenting yeast Phaffia rhodozyma contains astaxanthin as the principal carotenoid pigment. Echinenone, 3-hydroxyechinenone and phoenicoxanthin were also isolated and identified; isocryptoxanthin and canthaxanthin were absent. Evidence is presented for a new carotenoid, 3-hydroxy-3′4′-didehydro-β,ψ-caroten-4-one. A possible biosynthetic scheme for the formation of astaxanthin in P. rhodozyma is suggested.  相似文献   

20.
The ploidy of the red yeast Phaffia rhodozyma was evaluated using flow cytometric analyses of propidium iodide- stained cells and mutagenic inactivation kinetics. Our findings suggest that Phaffia rhodozyma is not haploid. Auxotrophic strains were generated at a high frequency following treatment of mutagenized cells with a combination of benomyl and ethyl acetate. Studies of an auxotrophic mutant using flow cytometry and UV inactivation indicated possible chromosome loss to an aneuploid state. Received 21 June 1998/ Accepted in revised form 25 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号