首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infection of cervical epithelial cells with certain high risk HPV genotypes is thought to play an etiologic role in the development of cervical cancer. In particular, HPV type 16 and 18 early protein 6 (E6) is thought to contribute to epithelial transformation by binding to the tumor suppressor protein p53, targeting it for rapid proteolysis, resulting in loss of its cell cycle arrest and apoptosis-inducing activities. Recent data indicate that factors responsible for triggering apoptosis reside in the cytoplasm of cells, and not in the nucleus. In particular, the findings that mitochondria are required in certain cell-free models for induction of apoptosis and that bcl-2 is localized to mitochondria have focused attention on the role of the mitochondrial membrane permeability transition (MPT) in apoptosis. Here we present data to indicate that HPV 16 E6 expression sensitizes cells to MPT-induced apoptosis. We also report that HPV 16 E6 sensitization of cells to MPT-induced apoptosis occurs only in the presence of wildtype (wt) p53 expression. The extent of apoptosis induced by atractyloside (an inducer of the MPT) in normal, temperature-sensitive (ts) p53, and HPV-16 E6 transfected J2-3T3 cells, and the HPV expressing cervical carcinoma cell lines SiHa, Hela and CaSki was determined. C33A cells, which express mutant p53 but not HPV, were also exposed to atractyloside in the presence or absence of HPV 16 E6 expression. Dose-dependent apoptosis induced by atractyloside in normal J2-3T3 cells and cervical carcinoma cells was measured by loss of cell viability, nuclear fragmentation and DNA laddering. The sensitivity of cells to atractyloside-induced apoptosis was found to be: HPV 16 E6-J2-3T3 > CaSki > normal-J2-3T3 cells ≈ ts p53-J2-3T3 ≈ vector-J2-3T3 cells > Hela > SiHa > C33A ≈ C33A 16 E6. Cyclosporin A (CsA), an inhibitor of the MPT, and ICE-I, a protease inhibitor, provided protection against atractyloside-induced apoptosis. These findings indicate that: 1) high risk HPV 16 E6 protein is capable of sensitizing cells to apoptosis; 2) HPV 16 E6 sensitization of cells to atractyloside-induced apoptosis occurs in a p53-dependent fashion; 3) the target of HPV 16 E6 sensitization of cells to atractyloside-induced apoptosis is the mitochondria; and 4) HPV 16 E6 sensitization of cells to atroctycoside-induced apoptosis involves an ICE-like protease-sensitive mechanism, regulating the onset of the MPT. These findings constitute the first evidence that mitochondria play a role in HPV 16 E6 modulation of apoptosis. J. Cell. Biochem. 66:245-255. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The signaling mechanism by which JNK affects mitochondria is critical to initiate apoptosis. Here we show that the absence of JNK provides a partial resistance to the toxic effect of the heavy metal cadmium. Both wild type and jnk−/− fibroblasts undergoing death exhibit cytosolic cytochrome c but, unlike wild type cells, the JNK-deficient fibroblasts do not display increased caspase activity and DNA fragmentation. The absence of apoptotic death correlates with a specific defect in activation of Bax. We conclude that JNK-dependent regulation of Bax is essential to mediate the apoptotic release of cytochrome c regardless of Bid and Bim activation.  相似文献   

4.
One critical step of the apoptotic process is the opening of the mitochondrial permeability transition (PT) pore leading to the disruption of mitochondrial membrane integrity and to the dissipation of the inner transmembrane proton gradient (ΔΨm). The mitochondrial PT pore is a polyprotein structure which is inhibited by the apoptosis-inhibitory oncoprotein Bcl-2 and which is closely associated with the mitochondrial benzodiazepine receptor (mBzR). Here we show that PK11195, a prototypic ligand of the 18-kDa mBzR, facilitates the induction of ΔΨmdisruption and subsequent apoptosis by a number of different agents,including agonists of the glucocorticoid receptor,chemotherapeutic agents (etoposide, doxorubicin),gamma irradiation, and the proapoptotic second messenger ceramide. Whereas PK11195 itself has no cytotoxic effect, it enhances apoptosis induction by these agents. This effect is not observed for benzodiazepine diazepam, whose binding site in the mBzR differs from PK11195. PK11195 partially reverses Bcl-2 mediated inhibition of apoptosis in two different cell lines. Thus, transfection-enforced Bcl-2 overexpression confers protection against glucocorticoids and chemotherapeutic agents, and this protection is largely reversed by the addition of PK11195. This effect is observed at the level of ΔΨmdissipation as well as at the level of nuclear apoptosis. To gain insights into the site of action of PK11195, we performed experiments on isolated organelles. PK11195 reverses the Bcl-2-mediated mitochondrial retention of apoptogenic factors which cause isolated nuclei to undergo apoptosis in a cell-free system. Mitochondria from control cells, but not mitochondria from Bcl-2-overexpressing cells, readily release such apoptogenic factors in response to atractyloside, a ligand of the adenine nucleotide translocator. However, control and Bcl-2-overexpressing mitochondria respond equally well to a combination of atractyloside and PK11195. Altogether, these findings indicate that PK11195 abolishes apoptosis inhibition by Bcl-2 via a direct effect on mitochondria. Moreover, they suggest a novel strategy for enhancing the susceptibility of cells to apoptosis induction and, concomitantly, for reversing Bcl-2-mediated cytoprotection.  相似文献   

5.
We investigated ADP/ATP exchange mediated by the adenine nucleotide translocator and opening of the mitochondrial permeability transition pore in homogenates from cerebellar granule cells en route to apoptosis induced by low potassium. We showed that, in the first 3 h of apoptosis, when maximum cytochrome c release had already occurred, adenine nucleotide translocator function was impaired owing to the action of reactive oxygen species, but no permeability transition pore opening occurred. Over 3-8 h of apoptosis, the permeability transition pore progressively opened, owing to caspase action, and further ADP/ATP translocator impairment occurred. The kinetics of transport and permeability transition pore opening were inversely correlated, both in the absence and presence of inhibitors of antioxidant and proteolytic systems. We conclude that, en route to apoptosis, alteration of the adenine nucleotide translocator occurs, resulting in permeability transition pore opening. This process depends on the action of caspase on pore component(s) other than the ADP/ATP translocator, because no change in either amount or molecular weight of the latter protein was noted during apoptosis, as measured by western blotting. Cell death occurs via apoptosis in the presence of cyclosporin A, the permeability transition pore inhibitor, thus showing that permeability transition pore opening, not needed for cytochrome c release, is also unnecessary for apoptosis to occur.  相似文献   

6.
Lysosomal photosensitizers have been used in photodynamic therapy. The combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. Lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, N-aspartyl chlorin e6 (NPe6), an effective photosensitizer that preferentially accumulates in lysosomes, was used to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells (ASTC-a-1) after NPe6-photodynamic treatment (NPe6-PDT) was studied using real-time single-cell analysis. Our results demonstrated that NPe6-PDT induced rapid generation of reactive oxygen species (ROS). The photodynamically produced ROS caused a rapid destruction of lysosomes, leading to release of cathepsins, and the ROS scavengers vitamin C and NAC prevent the effects. Then the following spatiotemporal sequence of cellular events was observed during cell apoptosis: Bcl-2-associated X protein (Bax) activation, cytochrome c release, and caspase-9/-3 activation. Importantly, the activation of Bax proved to be a crucial event in this apoptotic machinery, because suppressing the endogenous Bax using siRNA could significantly inhibit cytochrome c release and caspase-9/-3 activation and protect the cell from death. In conclusion, this study demonstrates that PDT with lysosomal photosensitizer induces Bax activation and subsequently initiates the mitochondrial apoptotic pathway.  相似文献   

7.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

8.
Oxidative stress has been postulated to be involved in aging and age-related degenerative diseases. Cell death as a result of oxidative stress plays an important role in the age related diseases. Using human diploid fibroblasts (HDF) as model to study the mechanism of cell death induced by oxidative stress, a condition was standardized to induce apoptosis in the early passage sub-confluent HDFs by a brief exposure of cells to 250 M hydrogen peroxide. It was observed that p38 MAP kinase (MAPK) was activated soon after the treatment followed by over-expression of Bax protein in cells undergoing apoptosis. An interesting finding of the present study is that the confluent, quiescent HDFs were resistant to cell death under identical condition of oxidative stress. The contact-inhibited quiescent HDFs exhibited increased glutathione level following H2O2-treatment, did not activate p38 MAP kinase, or over-express Bax, and were resistant to cell death. These findings indicated that there was a correlation between the cell cycle and sensitivity to oxidative stress. This is the first report to our knowledge that describes a relationship between the quiescence state and anti-oxidative defense. Furthermore, our results also suggest that the p38MAPK activation-Bax expression pathway might be involved in apoptosis induced by oxidative stress.  相似文献   

9.
Elevated levels of saturated fatty acids show a strong cytotoxic effect in liver cells. Sirtuin 3 (SIRT3), a mitochondrially localized member of NAD+‐dependent deacetylase has been shown to protect hepatocytes against the oxidative stress. The role of SIRT3 on the cytotoxicity caused by fatty acids in liver cells is not fully understood. The aim of this study was to evaluate the expression level of SIRT3, oxidative stress, and mitochondrial impairments in human hepatoma HepG2 cells exposed to palmitic acid (PA). Our results showed that PA treatment caused the deposition of lipid droplets and resulted in an increased expression of tumor necrosis factor‐α in a dose‐dependent manner. Excessive accumulation of PA induces the reactive oxygen species formation and apoptosis while dissipating the mitochondrial transmembrane potential. The level of SIRT3 expression in both nuclear and mitochondrial fractions in HepG2 cells was decreased with the increase in PA concentrations. However, in the cytosolic fraction, the SIRT3 was undetectable. In conclusion, our results showed that PA caused an increase in inflammation and oxidative stress in HepG2 cells. The exposure of PA also resulted in the decline in transmembrane potential and an increase in apoptosis. The underexpression of nuclear and mitochondrial SIRT3 by PA suggests that the PA target the process that regulates the stress‐related gene expression and mitochondrial functions.  相似文献   

10.
During apoptosis, an important pathway leading to caspase activation involves the release of cytochrome c from the intermembrane space of mitochondria. Using a cell-free system based on Xenopus egg extracts, we examined changes in the outer mitochondrial membrane accompanying cytochrome c efflux. The pro-apoptotic proteins, Bid and Bax, as well as factors present in Xenopus egg cytosol, each induced cytochrome c release when incubated with isolated mitochondria. These factors caused a permeabilization of the outer membrane that allowed the corelease of multiple intermembrane space proteins: cytochrome c, adenylate kinase and sulfite oxidase. The efflux process is thus nonspecific. None of the cytochrome c-releasing factors caused detectable mitochondrial swelling, arguing that matrix swelling is not required for outer membrane permeability in this system. Bid and Bax caused complete release of cytochrome c but only a limited permeabilization of the outer membrane, as measured by the accessibility of inner membrane-associated respiratory complexes III and IV to exogenously added cytochrome c. However, outer membrane permeability was strikingly increased by a macromolecular cytosolic factor, termed PEF (permeability enhancing factor). We hypothesize that PEF activity could help determine whether cells can recover from mitochondrial cytochrome c release.  相似文献   

11.
BRAF T1799A mutation is the most common genetic variation in thyroid cancer, resulting in the production of BRAF V600E mutant protein reported to make cells resistant to apoptosis. However, the mechanism by which BRAF V600E regulates cell death remains unknown. We constructed BRAF V600E overexpression and knockdown 8505C and BCPAP papillary and anaplastic thyroid cancer cell to investigate regulatory mechanism of BRAF V600E in cell death induced by staurosporine (STS). Induced BRAF V600E expression attenuated STS‐induced papillary and anaplastic thyroid cancer death, while BRAF V600E knockdown aggravated it. TMRM and calcein‐AM staining showed that opening of the mitochondrial permeability transition pore (mPTP) during STS‐induced cell death could be significantly inhibited by BRAF V600E. Moreover, our study demonstrated that BRAF V600E constitutively activates mitochondrial ERK (mERK) to inhibit GSK‐3‐dependent CypD phosphorylation, thereby making BRAF V600E mutant tumour cells more resistant to mPTP opening. In the mitochondria of BRAF V600E mutant cells, there was an interaction between ERK1/2 and GSKa/ß, while upon BRAF V600E knockdown, interaction of GSKa/ß to ERK was decreased significantly. These results show that in thyroid cancer, BRAF V600E regulates the mitochondrial permeability transition through the pERK‐pGSK‐CypD pathway to resist death, providing new intervention targets for BRAF V600E mutant tumours.  相似文献   

12.
Many cell death regulators physically or functionally interact with metabolic enzymes. These interactions provide insights into mechanisms of anticancer treatments from the perspective of tumor cell metabolism and apoptosis. Recent studies have shown that zinc and p53 not only induce tumor cell apoptosis, but also regulate tumor cell metabolism. However, the underlying mechanism is complex and remains unclear, making further research imperative to provide clues for future cancer treatments. In this study, we found that hexokinase 2 (HK2), which has dual metabolic and apoptotic functions, is downstream of zinc and p53 in both prostate cancer patient tissue and prostate cancer cell lines. Notably, the mitochondrial location of HK2 is crucial for its function. We demonstrate that zinc and p53 disrupt mitochondrial binding of HK2 in prostate cancer cells by phosphorylating VDAC1, which is mediated by protein kinase B (Akt) inhibition and glycogen synthase kinase 3β (GSK3β) activation. In addition, we found that zinc combined with p53 significantly inhibited tumor growth in a prostate cancer cell xenograft model. Therefore, interference of the mitochondrial localization of HK2 by zinc and p53 may provide a new treatment approach for cancer.  相似文献   

13.
14.
15.
This study has shown that purified recombinant human α‐synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α‐synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α‐synuclein expression by specific siRNA. Furthermore, in wild‐type (non‐transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild‐type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α‐synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease.

  相似文献   


16.
Endothelial injury or dysfunction is an early event in the pathogenesis of atherosclerosis. Epidemiological and animal studies have shown that 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) exposure increases morbidity and mortality from chronic cardiovascular diseases, including atherosclerosis. However, whether or how TCDD exposure causes endothelial injury or dysfunction remains largely unknown. Cultured human umbilical vein endothelial cells (HUVECs) were exposed to different doses of TCDD, and cell apoptosis was examined. We found that TCDD treatment increased caspase 3 activity and apoptosis in HUVECs in a dose‐dependent manner,at doses from 10 to 40 nM. TCDD increased cyclooxygenase enzymes (COX)‐2 expression and its downstream prostaglandin (PG) production (mainly PGE2 and 6‐keto‐PGF) in HUVECs. Interestingly, inhibition of COX‐2, but not COX‐1, markedly attenuated TCDD‐triggered apoptosis in HUVECs. Pharmacological inhibition or gene silencing of the PGE2 receptor subtype 3 (EP3) suppressed the augmented apoptosis in TCDD‐treated HUVECs. Activation of the EP3 receptor enhanced p38 MAPK phosphorylation and decreased Bcl‐2 expression following TCDD treatment. Both p38 MAPK suppression and Bcl‐2 overexpression attenuated the apoptosis in TCDD‐treated HUVECs. TCDD increased EP3‐dependent Rho activity and subsequently promoted p38MAPK/Bcl‐2 pathway‐mediated apoptosis in HUVECs. In addition, TCDD promoted apoptosis in vascular endothelium and delayed re‐endothelialization after femoral artery injury in wild‐type (WT) mice, but not in EP3?/? mice. In summary, TCDD promotes endothelial apoptosis through the COX‐2/PGE2/EP3/p38MAPK/Bcl‐2 pathway. Given the cardiovascular hazard of a COX‐2 inhibitor, our findings indicate that the EP3 receptor and its downstream pathways may be potential targets for prevention of TCDD‐associated cardiovascular diseases.  相似文献   

17.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

18.
Hydrostatic pressure (HP) is thought to increase within cartilage extracellular matrix as a consequence of fluid flow inhibition. The biosynthetic response of human articular chondrocytes to HP in vitro varies with the load magnitude, load frequency, as well as duration of loading. We found that continuous cyclic HP (5 MegaPascals (MPa) for 4 h; 1 Hz frequency) induced apoptosis in human chondrocytes derived from osteoarthritic cartilage in vitro as evidenced by reduced chondrocyte viability which was independent of initial cell densities ranging from 8.1 x 10(4) to 1.3 x 10(6) cells ml(-1). HP resulted in internucleosomal DNA fragmentation, activation of caspase-3, and cleavage of poly-ADP-ribose polymerase (PARP). At the molecular level, induction of apoptosis by HP was characterized by up-regulation of p53, c-myc, and bax-alpha after 4 h with concomitant down-regulation of bcl-2 after 2 h at 5 MPa as measured by RT-PCR. In contrast, beta-actin expression was unchanged. Real-time quantitative RT-PCR confirmed a HP-induced (5 MPa) 1.3-2.6 log-fold decrease in bcl-2 mRNA copy number after 2 and 4 h, respectively, and a significant increase (1.9-2.5 log-fold) in tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) mRNA copy number after 2 and 4 h, respectively. The up-regulation of p53 and c-myc, and the down-regulation of bcl-2 caused by HP were confirmed at the protein level by Western blotting. These results indicated that HP is a strong inducer of apoptosis in osteoarthritic human chondrocytes in vitro.  相似文献   

19.
20.
The mechanisms of injury- and disease-associated apoptosis of neurons within the CNS are not understood. We used a model of cortical injury in rat and mouse to induce retrograde neuronal apoptosis in thalamus. In this animal model, unilateral ablation of the occipital cortex induces apoptosis of corticopetal projection neurons in the dorsal lateral geniculate nucleus (LGN), by 7 days post-lesion, that is p53 modulated and Bax dependent. We tested the hypothesis that this degenerative process is initiated by oxidative stress and early formation of DNA damage and is accompanied by changes in the levels of pro-apoptotic mediators of cell death. Immunoblotting revealed that the protein profiles of Bax, Bak and Bad were different during the progression of neuronal apoptosis in the LGN. Bax underwent a subcellular redistribution by 1 day post-lesion, while Bak increased later. Bad showed an early sustained increase. Cleaved caspase-3 was elevated maximally at 5 and 6 days. Active caspase-3 underwent a subcellular translocation to the nucleus. A dramatic phosphorylation of p53 was detected at 4 days post-lesion. DNA damage was assessed immunocytochemically as hydroxyl radical adducts (8-hydroxy-2-deoxyguanosine) and single-stranded DNA. Both forms of DNA damage accumulated early in target-deprived LGN neurons. Transgenic overexpression of superoxide dismutase-1 provided significant protection against the apoptosis but antioxidant pharmacotreatments with trolox and ascorbate were ineffective. We conclude that overlapping and sequential signaling pathways are involved in the apoptosis of adult brain neurons and that DNA damage generated by superoxide derivatives is an upstream mechanism for p53-regulated, Bax-dependent apoptosis of target-deprived neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号