首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Nrg1 is a zinc finger protein involved in the glucose repression of several glucose-repressed genes such as STA1, SUC2, and GAL1. Although the molecular details of the Nrg1-mediated repression of STA1 have been partly characterized, it still remains largely unknown how Nrg1 regulates these multiple target genes. In this study, we show that Nrg1 mediates the glucose repression of SUC2 and HXT2 through its direct binding to the specific promoter regions; it binds to the −404 to −360 region of the SUC2 promoter and the −957 to −810 region of the HXT2 promoter. Nrg1 also interacts with the −380 to −250 region of the PCK1 promoter, suggesting that it might also contribute to the PCK1 repression. In addition, ChIP assays confirmed that Nrg1 associated with specific promoter regions of these glucose-repressed genes in vivo. Analysis of the DNA fragments to which it binds indicates that Nrg1 may recognize T/ACCCC sequence within the promoters of these glucose-repressed genes as well as in its own promoter. Collectively, our findings indicate that Nrg1 mediates the glucose repression of multiple genes through its direct binding to the specific promoter regions.  相似文献   

6.
7.
8.
9.
Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.  相似文献   

10.
11.
12.
13.
14.
The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.Subject terms: Molecular neuroscience, Schizophrenia  相似文献   

15.
16.
17.
Glucose repression in yeast.   总被引:11,自引:0,他引:11  
The Snf1 protein kinase is a central component of the signaling pathway for glucose repression in yeast. Recent studies have addressed the regulation of Snf1 kinase activity and elucidated mechanisms by which Snf1 controls repression and activation of glucose-repressed genes. Important advances include evidence that Snf1 regulates the localization of the Mig1 repressor and that Snf1 functions at multiple points to control Cat8 and Sip4, the activators of gluconeogenic genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号