首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I A Braude 《Biochemistry》1984,23(23):5603-5609
A multistep procedure has been developed which enables human gamma-interferon (HuIFN-gamma) to be purified to essential homogeneity. The procedure takes advantage of a modification of a previously described sequential chromatographic technique [Braude, I.A. (1983) Prep. Biochem. 13, 177-190] and the high isoelectric point of HuIFN-gamma (pH 9.5-9.8). The steps include Controlled Pore Glass adsorption chromatography, concanavalin A-Sepharose and heparin-Sepharose affinity chromatography, cation-exchange chromatography, and gel filtration chromatography. The purified HuIFN-gamma had a specific activity of 5.9 X 10(7) units/mg. This represents a purification of more than 70 000-fold and a 33% recovery. In addition, one gel filtration fraction had a specific activity of 2.5 X 10(8) units/mg. This represents a purification of greater than 300 000-fold and a recovery of greater than 17%. This fraction, when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was shown to be composed of one major 26-kilodalton (kDa) species and four minor species of 74, 67, 56, and 22 kDa. Analysis of this material with anti-HuIFN-gamma monoclonal antibody immunoabsorbent columns indicates that both the 26- and the 22-kDa species are HuIFN-gamma. Thus, the final product is essentially homogeneous (90-92% HuIFN-gamma), and the specific activity of pure HuIFN-gamma is approximately (2.7-2.8) X 10(8) units/mg of protein. Finally, the 26- and 22-kDa moieties are shown to be similar, if not identical, proteins as judged by amino acid and sequence analyses.  相似文献   

2.
Dimethylsulfide (DMS) is a volatile organosulfur compound which has been implicated in the biogeochemical cycling of sulfur and in climate control. Microbial degradation is a major sink for DMS. DMS metabolism in some bacteria involves its oxidation by a DMS monooxygenase in the first step of the degradation pathway; however, this enzyme has remained uncharacterized until now. We have purified a DMS monooxygenase from Hyphomicrobium sulfonivorans, which was previously isolated from garden soil. The enzyme is a member of the flavin-linked monooxygenases of the luciferase family and is most closely related to nitrilotriacetate monooxygenases. It consists of two subunits: DmoA, a 53-kDa FMNH2-dependent monooxygenase, and DmoB, a 19-kDa NAD(P)H-dependent flavin oxidoreductase. Enzyme kinetics were investigated with a range of substrates and inhibitors. The enzyme had a Km of 17.2 (± 0.48) μM for DMS (kcat = 5.45 s−1) and a Vmax of 1.25 (± 0.01) μmol NADH oxidized min−1 (mg protein−1). It was inhibited by umbelliferone, 8-anilinonaphthalenesulfonate, a range of metal-chelating agents, and Hg2+, Cd2+, and Pb2+ ions. The purified enzyme had no activity with the substrates of related enzymes, including alkanesulfonates, aldehydes, nitrilotriacetate, or dibenzothiophenesulfone. The gene encoding the 53-kDa enzyme subunit has been cloned and matched to the enzyme subunit by mass spectrometry. DMS monooxygenase represents a new class of FMNH2-dependent monooxygenases, based on its specificity for dimethylsulfide and the molecular phylogeny of its predicted amino acid sequence. The gene encoding the large subunit of DMS monooxygenase is colocated with genes encoding putative flavin reductases, homologues of enzymes of inorganic and organic sulfur compound metabolism, and enzymes involved in riboflavin synthesis.Dimethylsulfide (DMS) is a volatile organosulfur compound, important in the biogeochemical cycling of sulfur and global climate regulation (4, 9). Bacterial metabolism of DMS is an important sink of the compound in nature and is thought to account for degradation of over 80% of the DMS produced in the marine environment. Although bacterial pathways of DMS degradation have been studied previously in Hyphomicrobium spp. and in Thiobacillus spp. (12, 36), they remain poorly characterized, and few enzymes of DMS metabolism have been purified (see reference 32). DMS monooxygenase was first reported from an assay of NADH-dependent oxygen uptake in the presence of DMS by cell extracts of Hyphomicrobium S (12), an activity also demonstrated in cell extracts of other Hyphomicrobium, Thiobacillus, and Arthrobacter isolates (6, 7, 34), with specific activities around 30 nmol NADH oxidized min−1 mg protein−1. The enzyme has not previously been purified or characterized.The aims of this study were to purify and characterize the DMS monooxygenase enzyme from a member of the genus Hyphomicrobium. Since Hyphomicrobium S is no longer available, studies were undertaken using the type strain of H. sulfonivorans. The strain was originally isolated from garden soil and grows on DMS, as well as the related compounds dimethyl sulfoxide (DMSO) and dimethylsulfone (DMSO2). During growth on DMSO2, H. sulfonivorans first reduces DMSO2 to DMSO by a dimethylsulfone reductase, and subsequently a DMSO reductase converts DMSO to DMS, which is further oxidized to methanethiol and formaldehyde by a DMS monooxygenase. Oxidation of methanethiol to formaldehyde by methanethiol oxidase yields another mole of formaldehyde, which is either assimilated into biomass or oxidized to carbon dioxide to provide reducing equivalents (Fig. (Fig.1).1). DMS monooxygenase activity is present in the soluble protein fraction during growth on these compounds (6, 7). A 53-kDa polypeptide was previously observed in organisms grown on DMS, DMSO, and DMSO2 (6, 7), but its significance in the metabolism of these compounds was unknown.Open in a separate windowFIG. 1.Pathway and enzymes of dimethylsulfone degradation in Hyphomicrobium sulfonivorans S1. Reduction of dimethylsulfone [DMSO2; (CH3)2SO2] to dimethyl sulfoxide [DMSO; (CH3)2SO] and further reduction of DMSO to dimethylsulfide provides the substrate for DMS monooxygenase. Formaldehyde is either assimilated (via the serine cycle) or oxidized to CO2 providing reducing equivalents. Sulfide is oxidized to sulfate; see reference 7 for further details.  相似文献   

3.
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80 degrees C and 5, respectively; and the K(m) was 374 microM, with a V(max) of 1.72 micromol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50 degrees C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.  相似文献   

4.
A redoxyendonuclease from calf thymus was purified to apparent homogeneity. The redoxyendonuclease recognized and induced cleavage of DNA damaged by ultraviolet light. The enzyme preparation produced a single band of a relative molecular mass of approximately 34 kDa upon SDS/PAGE. The apurinic/apyrimidinic endonuclease and the DNA glycosylase activities remained associated in the apparently homogeneous preparation of the enzyme. The redoxyendonuclease activity displayed a broad pH optimum between pH 5.0-8.5 and exhibited no requirement for divalent cations. By application of FPLC columns Mono-S, Mono-Q and Mono-P, the isoelectric point (pI) of the enzyme was found to be approximately 8.0. Using the DNA sequencing procedure of Maxam and Gilbert [Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65, 499-560] the purified enzyme was found to incise ultraviolet-light-irradiated DNA at pyrimidine sites as observed previously with a more crude form of the enzyme. While the most frequently cleavaged sites for the crude preparation were at cytosine residues, the apparently homogeneous enzyme preparation frequently induced cleavage sites at both cytosine and guanine residues. Predominant incision induced by the apparently homogeneous preparation was observed at guanine residues when a particular DNA sequence was used as substrate. Furthermore, the 16 N-terminal amino acid residues of the purified enzyme were identified. The sequence did not show any significant similarity to other known proteins.  相似文献   

5.
Phosphofructokinase has been purified from pig kidney by extraction with phosphate buffer at pH 8, followed by alcohol treatment, affinity chromatography on matrix-bound Cibacron blue F3G-A, and gel chromatography on Sepharose 6B. Using sodium dodecyl sulphate electrophoresis the enzyme was found to be homogeneous and to have a specific activity of about 80 units/mg protein. Like other phosphofructokinases, at pH 7.0 the enzyme exhibits a sigmoidal dependence in its activity on the fructose 6-phosphate concentration and is strongly inhibited by ATP. The degree of citrate inhibition is influenced by the concentration of the two substrates. ATP strengthens and fructose 6-phosphate relieves the inhibition by citrate. AMP and cAMP are able to overcome the ATP inhibition. The ADP activation curve is biphasic. The molecular weight of the subunit of pig kidney phosphofructokinase was determined to be 88 000 by means of sodium dodecyl sulphate electrophoresis.  相似文献   

6.
An S1 nuclease preparation was used to purify the enzyme to homogeneity. The enzyme had an isoelectric point of 4.2, and a high content of hydrophobic amino acids, especially tyrosine. It exhibited low 3'-ribonucleotidase activity. Circular dichroism analysis suggested that the contents of alpha-helix, beta-structure and random coil are 25%, 31% and 44%, respectively. The enzyme contained about 3 g atoms Zn/mol and the removal of Zn from the enzyme by addition of EDTA resulted in disruption of its secondary structure with resultant inactivation. From Con A-Sepharose chromatography, we suggest that the enzyme is a high-mannose glycoprotein. After treatment with endo-beta-N-acetylglucosaminidase H under moderate conditions, a small part of the enzyme was converted to a form lacking the sugar side chain. This form of the enzyme was as thermostable as the parent enzyme, suggesting that the sugar side chain may not be involved in thermostability of the enzyme.  相似文献   

7.
Diadenosine tetraphosphatase, an enzyme splitting diadenosine tetraphosphate to AMP and ATP, has been purified to apparent homogeneity from a permanent cell line derived from a leukemic child. The purification procedure consisted of fractionation by ammonium sulfate precipitation, followed by Sephacryl 200 and DEAE-cellulose chromatography, and finally a differential membrane filtration. The enzyme is a single polypeptide chain of Mr = 17,500 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. The apparent molecular weight of the native enzyme was calculated as 20,000 from gel filtration data. The apparent Km for Ap4A was 0.5 microM as determined by two independent kinetic assays. None of the following compounds were substrates of the enzyme: diadenosine triphosphate, NAD, nucleoside 5'-phosphates (AMP, ATP, GDP, GTP, and UTP). The enzyme had optimal activity in the presence of 1 mM Mg2+, showing no activity in the presence of EDTA.  相似文献   

8.
An enzyme hydrolyzing diadenosine 5',5"'P1, P4-tetraphosphate (Ap4A) to AMP and ATP has been purified to apparent homogeneity from mouse liver cell extracts. The isolation procedure comprised ammonium sulfate precipitation, chromatography on Sephadex G-75. DEAE-cellulose, blue Sepharose and AMP-Sepharose. The enzyme is a single polypeptide chain with a native Mr = 64,000 with a Km of 1.66 microM and Vmax of 1.25 mumol/min. AMP, ADP, Ap4, GTP, Gp4, Ap3A, Ap5A, Gp3G, and Gp5G are noncompetitive inhibitors of the Ap4A hydrolase activity, whereas Gp4G inhibits Ap4A hydrolysis competitively with a Ki of 6 microM. Theophylline, caffeine, and isobutylmethylxanthine do not or only slightly inhibit Ap4A hydrolysis. Mitogenic factors have no effect on the enzymatic activity of Ap4A hydrolase, excluding that a direct influence of internalized mitogens on Ap4A degradation could be responsible for mitogen-dependent fluctuation of intracellular Ap4A pool sizes.  相似文献   

9.
A novel, simple, and rapid procedure for the purification of pea seedling amine oxidase is reported. The crude enzyme, obtained by ammonium sulfate fractionation, was purified in two steps: the first one by anion-exchange chromatography and the second one by affinity chromatography. The first chromatography step was carried out on a diethylaminoethyl-cellulose column. By lowering the amount of protein loaded on the column and the buffer concentration it was possible to obtain an enzyme pure at 95% (sp act 1.2 microkat/mg). To achieve a higher degree of purification various affinity resins were prepared and tested. The resins were obtained by covalent immobilization of polyamines on Sepharose according to three different procedures. The best results were obtained with 6-aminohexyl-Sepharose 2B, prepared using CNBr as coupling agent, and eluting the enzyme by a solution containing 1, 4-diaminocyclohexane. This last compound was found to be a relatively strong competitive inhibitor of the oxidative deamination of cadaverine catalyzed by pea seedling amine oxidase (Ki = 32 microM). According to this procedure an electrophoretically homogeneous enzyme, characterized by a specific activity of 1.63 microkat/mg, was obtained.  相似文献   

10.
A cell clone (GI-CO-T-9) derived from a long term T-cell culture (PF-382), established from a patient affected by acute T-lymphoblastic leukemia (T-ALL), was selected for the presence in the culture medium of factors suppressing T-cell proliferation. The crude supernatant has been subjected to a multi-step chromatographic fractioning, including: preparative gel permeation, anion exchange, and hydrophobic interaction High Performance Liquid Chromatography (HPLC). The highly purified material was characterized by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE), revealing single bands of 115 Kd and 80 Kd. The isoelectric points (pI), determined by flat-bed isoelectric-focusing, were 7.4 for High Molecular Weight Suppressor Factor (HMWSF) and 3.5-3.6 for Low Molecular Weight Suppressor Factor (LMWSF).  相似文献   

11.
Extracts of bovine neurointermediate pituitary secretory granules and frozen bovine neurointermediate pituitary contain multiple forms of peptidylglycine alpha-amidating monooxygenase (PAM) activity differing in apparent molecular weight and in charge. Metal chelate affinity chromatography, substrate affinity chromatography, and gel filtration resulted in the purification of two forms of amidation activity from frozen bovine neurointermediate pituitary: PAM-A, apparent molecular weight 54,000, was purified 7,000-fold and PAM-B, apparent molecular weight 38,000, was purified 21,000-fold. Enzyme activity of similar molecular weights was observed in the starting material. Purified PAM-A and PAM-B correspond to two of the three charge forms present in crude extracts, and both exhibited optimal activity at alkaline pH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of PAM-B revealed the presence of two bands with apparent molecular weights of 42,000 and 37,000; autoradiography of 125I-labeled PAM-B revealed only the same two bands, and 125I-labeled PAM-B co-eluted with enzyme activity during gel filtration. PAM-A was still heterogeneous based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The properties of purified PAM-A and PAM-B were very similar to those of amidation activity in crude extracts: activity was reduced upon removal of molecular oxygen; activity was stimulated by the addition of CuSO4 and eliminated by the addition of diethyldithiocarbamate; activity was stimulated by the addition of ascorbate, with optimal levels of ascorbate increasing as the concentration of peptide substrate was increased. In the presence of 1.25 mM ascorbate, PAM-B exhibited a Km of 7.0 microM for D-Tyr-Val-Gly and a Vmax of 84 nmol/micrograms/h.  相似文献   

12.
Aromatic amine dehydrogenase was purified and characterized from Alcaligenes xylosoxidans IFO13495 grown on beta-phenylethylamine. The molecular mass of the enzyme was 95.5 kDa. The enzyme consisted of heterotetrameric subunits (alpha2beta2) with two different molecular masses of 42.3 kDa and 15.2 kDa. The N-terminal amino acid sequences of the alpha-subunit (42.3-kDa subunit) and the beta-subunit (15.2-kDa subunit) were DLPIEELXGGTRLPP and APAAGNKXPQMDDTA respectively. The enzyme had a quinone cofactor in the beta-subunit and showed a typical absorption spectrum of tryptophan tryptophylquinone-containing quinoprotein showing maxima at 435 nm in the oxidized form and 330 nm in the reduced form. The pH optima of the enzyme activity for histamine, tyramine, and beta-phenylethylamine were the same at 8.0. The enzyme retained full activity after incubation at 70 degrees C for 40 min. It readily oxidized various aromatic amines as well as some aliphatic amines. The Michaelis constants for phenazine methosulfate, beta-phenylethylamine, tyramine, and histamine were 48.1, 1.8, 6.9, and 171 microM respectively. The enzyme activity was strongly inhibited by carbonyl reagents. The enzyme could be stored without appreciable loss of enzyme activity at 4 degrees C for one month at least in phosphate buffer (pH 7.0).  相似文献   

13.
Non-oxidative metabolism of ethanol via fatty acid ethyl ester synthase is present in those extrahepatic organs most commonly damaged by alcohol abuse. DEAE-cellulose chromatography of human myocardial cytosol at pH 8.0 separated synthase I, minor and major activities, eluting at conductivities of 5, 7 and 11 mS, respectively. The major synthase was purified 8900-fold to homogeneity by sequential gel permeation, hydrophobic interaction, and anti-human albumin affinity-chromatographies with an overall yield of 25%. SDS-PAGE showed a single polypeptide with a molecular mass of 26 kDa and gel permeation chromatography under nondenaturing conditions indicated a molecular mass of 54 kDa for the active enzyme. The purified enzyme catalyzed ethyl ester synthesis at the highest rates with unsaturated octadecanoic fatty acid substrates (Vmax = 100 and 65 nmol/mg/h for oleate and linoleate, respectively). Km values for oleate, linoleate, arachidonate, palmitate and stearate were 0.22 mM, 0.20 mM, 0.13 mM, 0.18 mM and 0.12 mM, respectively. Thus, human heart fatty acid ethyl ester synthase (major form) is a soluble dimeric enzyme comprised or two identical, or nearly identical, subunits (Mr = 26000).  相似文献   

14.
A 56,000-Da peptide with inherent protein phosphatase activity was isolated from the postribosomal supernatant fraction of rabbit reticulocytes. The peptide appears to form complexes with other proteins that are present in crude fractions. It exhibits atypical retention on steric exclusion columns during high performance liquid chromatography, an unusual characteristic that facilitated its isolation. The protein phosphatase activity of the 56,000-Da peptide is dependent on Mn2+ ions, but is not activated by either the FA, ATP/Mg2+ protein phosphatase activator system or by proteolysis. The protein phosphatase activity of the peptide is increased 3-fold or more by the antigen peptides described in the accompanying paper (Fullilove, S., Wollny, E., Stearns, G., Chen, S.C., Kramer, G., and Hardesty, B. (1984) J. Biol. Chem. 259, 2493-2500).  相似文献   

15.
The UDP-Glc:glycoprotein glucosyltransferase is a soluble protein of the endoplasmic reticulum that catalyzes the glucosylation of protein-linked, glucose-free, high mannose-type oligosaccharides. In vivo, the newly glucosylated compounds are immediately deglucosylated, presumably by glucosidase II. The glucosyltransferase has been purified to apparent homogeneity from rat liver. The enzyme appears to have a molecular weight of 150,000 and 270,000 under denaturing and native conditions, respectively. The pure enzyme shows an almost absolute requirement for Ca2+ ions and for UDP-Glc as sugar donor. The same as crude preparations, the pure enzyme synthesized Glc1 Man7-9GlcNAc2-protein from Man7-9GlcNAc2-protein. Denatured glycoproteins are glucosylated much more efficiently than native ones by the apparently homogeneous glucosyltransferase. Availability of the pure enzyme will allow testing the possible involvement of transient glucosylation of glycoproteins in the folding of glycoproteins and/or in the mechanism by which cells dispose of malfolded glycoproteins in the endoplasmic reticulum.  相似文献   

16.
A colicin isolated from a strain of Escherichia coli 0 111:B4:H2 has been purified by a combination of molecular sieve chromatography on Sephadex G-200 and ion-exchange chromatography on CM-Sephadex C50. The protein is homogeneous by the criteria of polyacrylamide gel electrophoresis at pH 4.5, 8.5, and 10.0, by dodecyl sulfate acrylamide gel electrophoresis, and by isoelectric focusing. The colicin has a molecular weight of 69,000, a sedimentation coefficient of 4.2 S, and a frictional ratio of 1.49. Isoelectric focusing indicated a pI of 9.50.  相似文献   

17.
Guinea pig (GP) acrosin was purified following acid extraction of testicular acetone powder, pH precipitation of the soluble extract, gel filtration on Sephadex G-100, ion-exchange chromatography on SP-Sephadex, and affinity chromatography on Concanavalin A-Sepharose. Final purification was achieved by re-chromatography on Sephadex G-100. Enzymatic activity was detected by following the hydrolysis of N-benzyloxycarbonylarginyl amide of 7-amino-4-trifluoromethylcoumarin at 37 degrees C, pH 8.0, before and after activation. GP testicular acrosin exhibited a molecular weight of 48,000 by gel filtration and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Following SDS-PAGE in gels containing 0.1% gelatin, protease activity was observed to comigrate with the major protein detected by silver staining. The purified GP acrosin showed cross-reactivity with a monospecific polyclonal rabbit antiserum directed against boar sperm acrosin and exhibited reversible pH-dependent activation. The physiochemical characteristics of the purified protein, including the amino acid composition, resemble those reported for acrosins from other species.  相似文献   

18.
Secondary amine mono-oxygenase from Pseudomonas aminovorans catalyzes the NAD(P)H- and dioxygen-dependent N-dealkylation of secondary amines to yield a primary amine and an aldehyde. Heme iron, flavin, and non-heme iron prosthetic groups are known to be present in the oligomeric enzyme. The N-dealkylation reaction is also catalyzed by the only other heme-containing mono-oxygenase, cytochrome P-450. In order to identify the heme iron axial ligands of secondary amine mono-oxygenase so as to better define the structural requirements for oxygen activation by heme enzymes, we have investigated the spectroscopic properties of the enzyme. The application of three different spectroscopic techniques, UV-visible absorption, magnetic circular dichroism and electron paramagnetic resonance, to study eight separate enzyme derivatives has provided extensive and convincing evidence for the presence of a proximal histidine ligand. This conclusion is based primarily on comparisons of the spectral properties of the enzyme with those of parallel derivatives of myoglobin (histidine proximal ligand) and P-450 (cysteinate proximal ligand). Spectral studies of ferric secondary amine mono-oxygenase as a function of pH have led to the proposal that the distal ligand is water. Deprotonation of the distal water ligand occurs upon either raising the pH to 9.0 or substrate (dimethylamine) binding. In contrast, the deoxyferrous enzyme appears to have a weakly bound nitrogen donor distal ligand. Initial spectroscopic studies of the iron-sulfur units in the enzyme are interpreted in terms of a pair of Fe2S2 clusters. Secondary amine mono-oxygenase is unique in its ability to function as cytochrome P-450 in activating molecular oxygen but to do so with a myoglobin-like active site. As such, it provides an important system with which to probe structure-function relations in heme-containing oxygenases.  相似文献   

19.
We purified semicarbazide-sensitive amine oxidase (SSAO) from porcine aorta by sequential DEAE-Sephacel, DEAE-Sephadex and Affi-gel-Con A chromatography. The analysis of this protein under denaturing conditions exhibited two protein bands migrating at 110-107 kDa. Under non-denaturing conditions only a single protein band was observed. By isoelectric focusing pI of SSAO was estimated to be 5.5. The apparent Km and Vmax of porcine SSAO for oxidation of benzylamine were 4.5 microM and 200 nmol/hr/mg protein, respectively. Porcine SSAO was inhibited both by semicarbazide and phenelzine while deprenyl or clorgyline were without any effect on enzyme activity. IC50 for inhibition of semicarbazide and phenelzine was 0.015 microM and 1 nmol, respectively.  相似文献   

20.
J P Coleman  J J Perry 《Microbios》1984,39(155):49-63
Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号