首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been well documented that skeletal muscle fatty acid oxidation can be elevated by continuous endurance exercise training. However, it remains questionable whether similar adaptations can be induced with intermittent interval exercise training. This study was undertaken to directly compare the rates of fatty acid oxidation in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria following these different exercise training regimes. Mitochondria were isolated from the gastrocnemius-plantaris muscles of male Sprague-Dawley rats following exercise training 6 days per week for 12 weeks. Exercise training consisted of either continuous, submaximal, endurance treadmill running (n = 10) or intermittent, high intensity, interval running (n = 10). Both modes of training enhanced the oxidation of palmityl-carnitine-malate in both mitochondrial populations (p < 0.05). However, the increase associated with the intermittent, high intensity exercise training was significantly greater than that achieved with the continuous exercise training (p < 0.05). Also, the increases associated with the IMF mitochondria were greater than the SS mitochondria (p < 0.05). These data suggest that high intensity, intermittent interval exercise training is more effective for stimulation of fatty acid oxidation than continuous submaximal exercise training and that this adaptation occurs preferentially within IMF mitochondria.  相似文献   

2.
A morphometric analysis of the heart muscle cell shows significant differences in the reaction of different cellular structures in different experimental stress models of the myocardium (swimming exercise and ligature infarction) in the rat. For instance, the number of mitochondria is 44% higher only 2 days after infarction than after 45 h of swimming exercise over a period of 4 weeks. The mitochondria/myofibrils ratio is higher than in the case of training. But later on in the course of the experiment the number of mitochondria and their membrane surface density diminishes compared with training. The differences in the rate of formation and in the kind and intensity of the changes are probably attributable to different adaptive mechanisms by means of which the heart reacts to acute and chronic loads.  相似文献   

3.
Acute exercise, and in particular aerobic exercise, increases skeletal muscle energy demand causing mitochondrial stress, and mitochondrial-related adaptations which are a hallmark of exercise training. Given that mitochondria are central players in the exercise response, it is imperative that they have networks that can communicate their status both intra- and inter-cellularly. Peptides encoded by short open-reading frames within mitochondrial DNA, mitochondrial-derived peptides (MDPs), have been suggested to form a newly recognised branch of this retrograde signalling cascade that contribute to coordinating the adaptive response to regular exercise. Here we summarise the recent evidence that acute high intensity exercise in humans can increase concentrations of the MDPs humanin and MOTS-c in skeletal muscle and plasma, and speculate on the mechanisms controlling MDP responses to exercise stress. Evidence that exercise training results in chronic changes in MDP expression within tissues and the circulation is conflicting and may depend on the mode, duration, intensity of training plan and participant characteristics. Further research is required to define the effect of these variables on MDPs and to determine whether MDPs other than MOTS-c have exercise mimetic properties. MOTS-c treatment of young and aged mice improves exercise capacity/performance and leads to adaptions that are similar to that of being physically active (weight loss, increased antioxidant capacity and improved insulin sensitivity), however, studies utilising a MOTS-c inactivating genetic variant or combination of exercise + MOTS-c treatment in mice suggest that there are distinct and overlapping pathways through which exercise and MOTS-c evoke metabolic benefits. Overall, MOTS-c, and potentially other MDPs, may be exercise-sensitive myokines and further work is required to define inter- and intra-tissue targets in an exercise context.  相似文献   

4.
5.
Thirty-five skiers with different types of energy supply to skeletal muscle were studied over a one-year training cycle. The adaptive characteristics of the adolescent boys were assessed by Baevskii's index of stress in the body's regulatory systems (stress index) caused by exercise at high workloads (3 and 6 W/kg); by the physiological cost of the exercise; by the time to exhaustion at a moderate workload (1.5 W/kg) in a bicycle ergometer test; and by athletic results. The stress index, the physiological cost of exercise and their changes over a one-year training cycle were clearly correlated with the type of energy production. It was suggested that training brings into play genetically determined adaptive programs and that an increase in the functional capabilities during ontogenesis is under control of the genome and mainly determined by individual and typological features of the body.  相似文献   

6.
The evolution of different populations within a species in response to selective pressures can potentially happen in three different ways. It can occur in parallel, where similar changes occur independently in each population in response to selection; in concert, where the spread of an adaptive mutation across a species' range results in a single allele fixing in each population; or populations can diverge in response to local selective pressures. We explored these possibilities in populations of the homoploid hybrid species Helianthus deserticola relative to its parental species Helianthus annuus and Helianthus petiolaris using an analysis of variation in 96 expressed sequence tag-based microsatellites. A total of nine loci showed evidence consistent with recent selection at either the species or population level, although two of these genes were discarded because the apparent sweep did not occur relative to the parent from which the locus was derived. Between one and five loci showed a putative sweep across the entire species range with the same microsatellite allele fixed in each population. This pattern is consistent with evolution in concert despite geographical isolation and potential independent origins of the populations. Only one population of H. deserticola showed candidate sweeps that were unique compared to the rest of the species, and this population has also potentially experienced recent admixture with the parental species.  相似文献   

7.
Cardiac hypertrophy induced by exercise is associated with less cardiac fibrosis and better systolic and diastolic function, suggesting that the adaptive mechanisms may exist in exercise-induced hypertrophy. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Sixteen male Sprague–Dawley rats were divided into trained (T) and control(C). T rats underwent eight weeks of swimming training seven days/week, using a high intensity protocol. Hearts were used to generate 2-D electrophoretic proteome maps. Training significantly altered 23 protein spot intensities (P < 0.05), including proteins associated with the mitochondria oxidative metabolism, such as prohibitin, malate dehydrogenase, short-chain acyl-CoA dehydrogenase, triosephosphate isomerase, electron transfer flavoprotein subunit beta, ndufa10 protein, ATP synthase subunit alpha and isocitrate dehydrogenase [NAD] subunit. Additionally, Prohibitin was increased in the exercise-induced hearts. Cytoskeletal, signal pathway, stress and oxidative proteins also increased within T groups. These results strongly support the notion that the observed changes in the expression of energy metabolism proteins resulted in a potential increase in the capacity to synthesise ATP, probably via mitochondrial oxidative metabolism. The observed changes in the expression of these metabolic and structural proteins induced by training may beneficially influence heart metabolism, stress response and signalling paths, and therefore improve the overall cardiac function.  相似文献   

8.
A network of 92 pedigreed ex situ conservation plantings of Pinus tecunumanii, established as replicated progeny within provenance trials, is used to present a principal components-based analysis that illustrates the climatic preferences of 23 populations from the species’ native range. This meta-analysis quantifies changes in the relative productivity, assessed as individual-tree volume, of populations across climatic gradients and associates the preference of a population with increased volume production along the climatic gradient. Clustering and ordination on the matrix containing estimates of change in productivity for each population summarise differentials in productivity associated with climatic gradients. The preference of populations along principal components therefore reflects the adaptive profiles of populations, which may be used with breeding-value estimates from routine genetic evaluations to assist with the development of deployment populations targeting different environments. As well, the approach may be used to test whether the preference of a population, estimated as population loadings for growth differentials, is affected by the climate in the native range of the population. This relationship may be interpreted as an estimate of how much local climate shapes the adaptive profiles of populations. The amount and seasonality of precipitation most clearly differentiate the adaptive profiles of populations, with less variation in the population responses explained by temperature differentiation. As expected from type-B correlation estimates, most populations exhibited small changes in relative productivity across climatic gradients. However, patterns of similarities in adaptive profiles among populations were evident using spatial orientation to display population responses to the climatic variables experienced in the provenance trials. Clustering and ordination of population responses derived from empirical data served to identify populations that responded positively or negatively to climatic variables; this information may help guide conservation genetics efforts, direct the deployment of germplasm, or identify seed sources that are sensitive to changes in climatic variables. Linking response patterns to the climatic data from the native range of each population indicated little effect of local climate shaping adaptive profiles.  相似文献   

9.
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.  相似文献   

10.
Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We tested the hypothesis that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response and that exercise training could reverse this phenotype. MPT was assessed by mitochondrial swelling in response to 10-100 μM Ca(2+). FH pigs did show an increased MPT response to Ca(2+) that was associated with decreases in the expression of the putative MPT pore components mitochondrial phosphate carrier (PiC) and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation, as well as decreased levels of reduced GSH in cardiac mitochondria. Expression of the mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD), thioredoxin-2 (Trx2), and peroxiredoxin-3 (Prx3) was greatly reduced in the FH pigs. In contrast, cytosolic catalase expression and activity were increased. However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce mitochondrial oxidative stress, and return MnSOD, Trx2, Prx3, and catalase expression/activities to normal. We conclude that FH reduces mitochondrial antioxidants, increases mitochondrial oxidative stress, and enhances the MPT response in the porcine myocardium, and that exercise training can reverse these detrimental alterations.  相似文献   

11.
The historical focus on offspring size has been to explain variation among populations, but there have been few attempts to determine whether variation is greatest at population scale. Offspring size variation is typically viewed as an adaptive response to changes in the relationship between offspring size and performance, yet direct tests remain elusive. We partitioned natural variation in offspring size for a marine invertebrate, Watersipora subtorquata, at a range of spatial and temporal scales across southeastern Australia, and we estimated the relationship between offspring size and performance at each population and time. There was significant variation in offspring size among populations, but regional differences explained only approximately 25% of the observed variation, suggesting that there should be a greater focus on small-scale variation in offspring size. We used our data to parameterize an optimality model to generate predictions of offspring size among different populations and times. Differences in the relationship between offspring size and postmetamorphic performance (and therefore changes in size of offspring that were predicted to maximize maternal fitness) among populations and times were associated with differences in offspring sizes among those populations and times. We suggest that interpopulation variation in offspring size can be an adaptive response to local conditions, but the optimal offspring size is surprisingly dynamic.  相似文献   

12.
The ultrastructural morphometry of collagen fibril populations in 24 calcaneal tendons obtained from 12 Fischer 344 rats were studied to elucidate matrical changes induced by food restriction and/or endurance exercise. Rats were randomly assigned to four equal groups: ad libitum control (AC), ad libitum exercise (AE), restricted diet control (RC) and restricted diet exercise (RE) groups. Beginning from 6 weeks of age, animals in the two food restriction groups were fed 60% of the mean food consumption of ad libitum fed rats. Then, starting from 6-7 months of age, the rats in the two exercise groups performed 40-50 min of treadmill running at 1.2-1.6 miles h-1 every day for a total of 10 weeks. Endurance training did not significantly alter body weight, but food restriction with or without exercise resulted in a significant loss of body weight. In ad libitum fed controls, food restriction alone did not significantly alter the mean collagen fibril CSA, but predisposed a preponderance of small-sized collagen fibrils. Endurance training per se induced a significant (32%) increase in mean fibril CSA (P less than 0.05), but this adaptive response to exercise was prevented by food restriction, as indicated by a 33% decline in fibril CSA (P less than 0.05). These findings demonstrate that dietary restriction modifies the adaptation of tendon collagen morphometry in response to endurance training, and that weight loss is better achieved with food restriction than endurance exercise.  相似文献   

13.
The results of changes in the physiological cost of 30-min submaximal aerobic bicycle ergometric exercise and characteristics of the mitochondrial apparatus of m. vastus lateralis were assessed comparatively during 120-day (–6°) antiorthostatic hypokinesia either without prophylactic measures or with low-intensity resistance exercise training for 60 days using a Penguin exercise suit. Hypokinesia was accompanied by an increase in the working heart rate and lactate accumulation in the blood during the test exercise, as well as by a decrease in the myofibril size and the volume density of mitochondria in the m. vastus lateralis fibers. The patterns of dynamic changes in the lactate concentration in the blood during exercise training and in the volume density of central mitochondria were found to be similar. A correlation between the rate of lactate accumulation in the blood during the test exercise and the volume density of mitochondria in the working muscle appeared after long-term (60 days) exposure to hypokinesia. The use of the Penguin exercise suit in dynamic mode during prolonged (60-day) exposure to hypokinesia completely prevented the following effects: atrophy of slow-type fibers, a decrease in the volume density of central mitochondria, and an increase in the level of lactate accumulation in the blood under conditions of a standard submaximal aerobic exercise load. The correlation links between the oxidative potential of working muscle and the energy supply of muscular work are discussed.  相似文献   

14.
Whether regular exercise is beneficial or should be avoided is a question currently unsettled in patients with heteroplasmic mitochondrial DNA (mtDNA) disorders of skeletal muscle. Deleterious effects of habitual physical inactivity superimposed upon impaired mitochondrial oxidative phosphorylation may contribute to varying degrees of exercise intolerance in these patients. Endurance exercise training is widely known to improve exercise capacity in healthy subjects and various chronic-disease patient populations. Although we have shown that beneficial physiological and biochemical responses to training increase exercise tolerance in patients with mtDNA defects, knowledge of the muscle adaptive response to endurance training within the setting of mitochondrial heteroplasmy remains limited. In order to determine advisability of endurance training as therapy, it remains to be established whether potential endurance training-induced increases in mutant mtDNA levels may be offset by increases in absolute wild-type mtDNA levels, and whether chronic inactivity leads to a selective down-regulation of wild-type mtDNA. Resistance training utilizes a different adaptive exercise approach to induce the transfer of normal mitochondrial templates from satellite cells to mature muscle fibers of patients with sporadic mtDNA disorders. The efficacy and safety of this approach needs to be further established. Our current inability to clearly advise patients to "use it or lose it" underscores the immediate urgency of studying the effects of exercise on skeletal muscle of patients with heteroplasmic mtDNA defects.  相似文献   

15.
Isolated rat liver mitochondria were split into three fractions of increasing density when applied to a Percoll gradient. NADH-ubiquinone oxidoreductase, succinate dehydrogenase and cytochrome-c oxidase but not F1-ATPase activities increased with density as well as respiratory rate in state 3 and the respiratory control index. Flow cytometry of mitochondrial density fractions stained with rhodamine-123 revealed the occurrence in each density fraction of two distinct mitochondrial populations with different fluorescence intensity. The high fluorescence population was minor and its proportion decreased with density. The extent of high fluorescence population staining depended on the deenergized state of the mitochondria suggesting that this population represents an immature form of the mitochondria which may develop into a fully functional organelle by the incorporation of structural and/or functional proteins.  相似文献   

16.
Previous studies have indicated that exercise acutely induces large increases in uncoupling protein-3 (UCP3) in skeletal muscle, whereas endurance training results in marked decreases in muscle UCP3. Because UCP3 expression appears to be regulated by the same mechanism as other mitochondrial constituents, it seemed unlikely that exercise would result in such large and divergent changes in mitochondrial composition. The purpose of this study was to test the hypothesis that major changes in UCP3 protein concentration do not occur independently of mitochondrial biogenesis and that UCP3 increases as a component of the exercise-induced increase in mitochondria. We found a large increase in UCP3 mRNA immediately and 3 h after a bout of swimming. UCP3 protein concentration was increased approximately 35% 18 h after a single exercise bout, approximately 63% after 3 days, and approximately 84% after 10 days of exercise. These increases in UCP3 roughly paralleled those of other mitochondrial marker proteins. Our results are consistent with the interpretation that endurance exercise induces an adaptive increase in mitochondria that have a normal content of UCP3.  相似文献   

17.
Effect of exercise training on tissue vitamin E and ubiquinone content   总被引:2,自引:0,他引:2  
Endurance exercise training led to an adaptive increase in the ubiquinone content and cytochrome c reductase activity of red quadriceps and soleus muscles and adipose tissues, but not of cardiac or white quadriceps muscle. These findings are consistent with the well-known positive adaptation of skeletal muscle mitochondria to endurance training. However, there was no concomitant increase in the vitamin E content of tissues, which showed an increase in mitochondrial content. Since ubiquinone is located in the mitochondrial inner membrane and the major pool of vitamin E is also associated with mitochondrial membranes, the results suggest that training causes a substantial decrease in vitamin E concentration in the proliferating muscle mitochondrial membranes, thus depleting muscle mitochondria of their major lipid antioxidant. Since vitamin E is the major cellular, lipid-soluble, chain-breaking antioxidant, these findings indicate increased free radical reactions in the tissues of exercising animals.  相似文献   

18.
Plasma beta endorphin and met-enkephalin concentrations were measured in response to treadmill exercises in 15 normal women before, during, and after an intensive programme of exercise training. Significant release of beta endorphin occurred in all three test runs, and the pattern and amount of release were not altered by training. Before training dramatic release of met-enkephalin was observed in seven subjects and smaller rises observed in a further four, and this response was almost abolished by training. This represents the first observed "physiological" stimulus to met-enkephalin release. Endogenous opioid peptides play a part in adaptive changes to exercise training and probably contribute to the menstrual disturbances of women athletes.  相似文献   

19.
Cai HW  Wang XK  Morishima H 《Heredity》2004,92(5):409-417
We investigated genetic diversity among and within natural populations of Asian common wild rice, Oryza rufipogon, from three different classes of data: quantitative traits, allozymes, and restriction fragment length polymorphisms (RFLPs). The seven populations examined showed polymorphism to varying degrees. The amount of intrapopulation variability appeared to be influenced not only by breeding system but also by the evolutionary history of each population. Interpopulation differentiation was clear, but different classes of data elucidated different patterns. Quantitative traits revealed ecotype differentiation into perennial and annual types of population, whereas allozyme and RFLP analyses revealed geographical differentiation among populations. These results suggest that the diversity patterns shown by quantitative trait analysis reflect mainly the occurrence of adaptive differentiation in response to habitat conditions and that those shown by allozyme and RFLP analyses reflect mainly the effect of isolation by distance. Population differentiation parameters (F(ST)) were highly variable among loci in allozymes as well as in RFLPs.  相似文献   

20.
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号