首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Marginal zone (MZ) B cells, identified as surface (s)IgMhighsIgDlowCD23low/−CD21+CD38 B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27+ and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared (“stereotyped”) sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli.  相似文献   

2.
Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.  相似文献   

3.
A novel dendritic‐like cell subset termed L‐DC was recently identified in murine spleen based on marker expression of a homogeneous cell population derived from long‐term culture of neonatal spleen. The function of L‐DC is distinct from other splenic dendritic and myeloid cell subsets because of their high endocytic capacity and their ability to cross‐present antigen to CD8+ T cells. This paper shows the subset to be unique to spleen and blood, with a similar, but possibly functionally distinct subset also present in bone marrow. The prevalence of the subset is low; ~6% of all dendritic and myeloid cells in the spleen and ~5% in blood. However, they are a distinct cell type on the basis of marker expression, and endocytic and T‐cell stimulatory capacity. Attempts to identify an enriched population of these cells in mutant mouse strains with reported increases in myelopoiesis showed either a lack of L‐DC or an altered phenotype reflective of the phenotype of the mouse strain.  相似文献   

4.
Dendritic cells (DC) are known to develop from macrophage dendritic progenitors (MDP) in bone marrow (BM), which give rise to conventional (c)DC and monocytes, both dominant antigen presenting cell (APC) subsets in spleen. This laboratory has however defined a distinct dendritic‐like cell subset in spleen (L‐DC), which can also be derived in long‐term cultures of spleen. In line with the restricted in vitro development of only L‐DC in these stromal cultures, we questioned whether self‐renewing HSC or progenitors exist in spleen with restricted differentiative capacity for only L‐DC. Neonatal spleen and BM were compared for their ability to reconstitute mice and to give rise to L‐DC, as well as other splenic APC. Neonatal spleen cells were transplanted into allotype‐distinct lethally irradiated hosts along with host‐type competitor BM cells, and assayed over 8 to 51 weeks for haematopoietic reconstitution of L‐DC and cDC subsets, along with other lymphoid and myeloid cells. In this study, neonatal spleen showed multilineage haematopoietic reconstitution in mouse chimeras, rather than specific or restricted ability to differentiate into L‐DC. However, the representation of individual APC subsets was found to be unequal in chimeras partially reconstituted with donor cells, such that more donor‐derived progeny were seen for L‐DC than for myeloid and cDC subsets. The ability of HSC in spleen to develop into L‐DC was indicated by a strong bias in the subset size of these cells over other splenic APC subsets. This type of evidence supports a model whereby spleen represents an important site for haematopoiesis of this distinct DC subset. The conditions under which haematopoiesis of L‐DC occurs in spleen, or the progenitors involved, will require further investigation.  相似文献   

5.
The antigenic heterogeneity of the reticular framework of the white pulp (WP) and marginal zone (MZ) is well documented in the human adult spleen. The ontogeny of the WP and MZ of human fetal spleens was examined with special reference to the heterogeneity of the reticular framework. In the spleen of the 17th gestational week (gw), α-smooth muscle actin (α-SMA)-positive reticulum cells were scattered around the arterioles. From the 20th to 23rd gw, α-SMA-positive reticulum cells increased in number and began to form a reticular framework. An accumulation of T and B lymphocytes occurred within the framework, and a primitive WP was observed around the arterioles. At the 24th gw, antigenic diversity of the reticular framework was observed, and T and B lymphocytes were segregated in the framework. T lymphocytes were sorted into the α-SMA-positive reticular framework, and the periarteriolar lymphoid sheath (PALS) was formed around the arteriole. B lymphocytes aggregated in eccentric portions to the PALS and formed the lymph follicle (LF). The reticular framework of the LF was α-SMA-negative. MZ appeared in the α-SMA-positive reticular framework around the WP at the 26th gw. The PALS, LF, and MZ developed with gestational time. The reticular framework of the PALS, LF, and MZ is thus heterogeneous in the fetal spleen, and the development of the heterogeneity is related to the ontogeny of the PALS, LF, and MZ. This work was supported, in part, by the Open Translational Research Project, Advanced Medical Science Center, Iwate Medical University.  相似文献   

6.
7.
8.
Recent studies have implicated a role for Notch in the generation of marginal zone (MZ) B cells. To further investigate the role of Notch in the B cell lineage, we have analyzed the effects of reduced Notch2 signaling in mice expressing one functional allele of Notch2 (Notch2(+/-)). Notch2(+/-) mice have reduced B1 B cells of the peritoneal cavity and show a severe reduction in MZ B cells of the spleen. The reduction in MZ B cells was not due to the disruption of splenic architecture, disregulated terminal differentiation, nor to increased apoptosis within the MZ B cell compartment. Rather, our data suggest that Notch2 haploinsufficiency leads to impaired development of MZ B cells, possibly by impacting the formation of immediate MZ B precursors. These results provide evidence that Notch2 plays a determining role in the development and/or the maintenance of B1 B and MZ B cells.  相似文献   

9.
Antigen-presenting cells (APC), like dendritic cells (DC), are essential for T-cell activation, leading to immunity or tolerance. Multiple DC subsets each play a unique role in the immune response. Here, a novel splenic dendritic-like APC has been characterized in mice that has immune function and cell surface phenotype distinct from other, described DC subsets. These were identified as a cell type continuously produced in spleen long-term cultures (LTC) and have an in vivo equivalent cell type in mice, namely ‘L-DC’. This study characterizes LTC-DC in terms of marker phenotype and function, and compares them with L-DC and other known splenic DC and myeloid subsets. L-DC display a myeloid dendritic-like phenotype equivalent to LTC-DC as CD11cloCD11bhiMHC-IICD8α cells, distinct by high accessibility and endocytic capacity for blood-borne antigen. Both LTC-DC and L-DC have strong antigen cross-presentation ability leading to strong activation of CD8+ T cells, particularly after exposure to lipopolysaccharide. However, they have weak ability to stimulate CD4+ T cells in antigen-specific responses. Evidence is presented here for a novel DC type produced by in vitro haematopoiesis which has distinct antigen-presenting potential and reflects a DC subset present also in vivo in spleen.  相似文献   

10.
Niemann–Pick disease, type C1 (Npc1), is an atypical lysosomal storage disorder caused by autosomal recessive inheritance of mutations in Npc1 gene. In the Npc1 mutant mice (Npc1?/?), the initial manifestation is enlarged spleen, concomitant with free cholesterol accumulation. Telocytes (TCs), a novel type of interstitial cell, exist in a variety of tissues including spleen, presumably thought to be involved in many biological processes such as nursing stem cells and recruiting inflammatory cells. In this study, we found that the spleen is significantly enlarged in Npc1?/? mice, and the results from transmission electron microscopy examination and immunostaining using three different TCs markers, c‐Kit, CD34 and Vimentin revealed significantly increased splenic TCs in Npc1?/? mice. Furthermore, hematopoietic stem cells and macrophages were also elevated in Npc1?/? spleen. Taken together, our data indicate that splenic TCs might alleviate the progress of splenic malfunction via recruiting hematopoietic stem cells and macrophages.  相似文献   

11.
Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad) results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+) in the splenic marginal zone (MZ) play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs) in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation) or CR2-fH (inhibits only the alternative complement activation pathway) prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity – the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement – in orchestrating local inflammation and functional cooperation of PMNs and resident macrophages in the splenic MZ, which collectively contribute to limiting disseminated pathogen spread via elimination of virus-containing cells.  相似文献   

12.
Protective immunity against T cell independent (TI) antigens such as Streptococcus pneumoniae is characterized by antibody production of B cells induced by the combined activation of T cell independent type 1 and type 2 antigens in the absence of direct T cell help. In mice, the main players in TI immune responses have been well defined as marginal zone (MZ) B cells and B-1 cells. However, the existence of human equivalents to these B cell subsets and the nature of the human B cell compartment involved in the immune reaction remain elusive. We therefore analyzed the effect of a TI antigen on the B cell compartment through immunization of healthy individuals with the pneumococcal polysaccharide (PnPS)-based vaccine Pneumovax®23, and subsequent characterization of B cell subpopulations. Our data demonstrates a transient decrease of transitional and naïve B cells, with a concomitant increase of IgA+ but not IgM+ or IgG+ memory B cells and a predominant generation of PnPS-specific IgA+ producing plasma cells. No alterations could be detected in T cells, or proposed human B-1 and MZ B cell equivalents. Consistent with the idea of a TI immune response, antigen-specific memory responses could not be observed. Finally, BAFF, which is supposed to drive class switching to IgA, was unexpectedly found to be decreased in serum in response to Pneumovax®23. Our results demonstrate that a characteristic TI response induced by Pneumovax®23 is associated with distinct phenotypical and functional changes within the B cell compartment. Those modulations occur in the absence of any modulations of T cells and without the development of a specific memory response.  相似文献   

13.
The CD9 tetraspanin is known to be expressed at high levels on marginal zone (MZ) B cells, B-1 B cells, and plasma cells, and its expression is believed to be dependent on signals derived via Btk. In CD9 null mice, however, the development and survival of MZ B cells, B-1 B cells, and plasma cells all appear to be unaffected, and humoral immune responses to T-dependent and T-independent Ags are similar to those seen in wild-type littermate controls. In wild-type mice, CD9 levels may serve to distinguish between the presumed MZ precursor B cell population in the spleen and other IgD-expressing transitional B cells that express lower levels of CD21 and CD1d. These results suggest that CD9 is dispensable for B cell development and humoral immunity, but that this protein may serve as an additional marker for the presumed MZ precursor population of splenic B cells.  相似文献   

14.
Mice with malaria showed unique immunological responses, including the expansion of NK1.1TCRint cells (extrathymic T cells). Since TCRint cells with autoreactivity and autoantibody-producing B cells (B-1 cells) are often simultaneously activated under autoimmune conditions, it was examined whether B-1 cells were activated in the course of malarial infection. From days 14 after infection, B220low B-1 cells appeared in the liver and spleen. The number of B220low B cells was highest at day 14, but the ratio was highest at days 28-35. In parallel with the appearance of B220low cells, autoantibodies against HEp-2 cells and double-stranded DNA were detected in sera. These B220low cells had phenotypes of CD44high, CD23 and CD62L. In sharp contrast, conventional B220high B cells (B-2 cells) were CD44low, CD23+ and CD62L+. These results suggested that malaria immune responses were not mediated by conventional T and B cells but resembled the responses during autoimmune diseases.  相似文献   

15.
It is thought that the spleen contains stem cells that differentiate into somatic cells other than immune cells. We investigated the presence of these hypothetical splenic cells with stem cell characteristics and identified adherent cells forming densely-packed colonies (Splenic Adherent Colony-forming Cell; SACC) in the spleen. Splenic Adherent Colony-forming Cell was positive for alkaline phosphatase staining and stage-specific embryonic antigen (SSEA)-1 antigen. However, the self-renewal properties of SACCs were limited because they stopped cell proliferation once colonies visible to the naked eye were formed. Gene expression analyses by semi-quantitative RT-PCR revealed the significant expression of c-Myc and Klf4, whereas faint or no expression was evident for Nanog, Oct3/4, and Sox2. Global expression analyses by DNA microarray and subsequent gene ontology analyses revealed that the expression levels of genes related to the immune system were significantly lower in SACCs than in control splenic cells. In contrast, genes unrelated to the immune system, such as those involved in cell adhesion and axon guidance, were relatively highly expressed in SACCs compared with control splenic cells. Taken together, we identified a novel cell type residing in the spleen that is different from the hypothetical splenic stem cell, but which bears some, but not all, characteristics that represent an undifferentiated state.  相似文献   

16.
Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220+ bone marrow cells, CD19 thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis.  相似文献   

17.
The distribution of capillaries, sinuses and larger vessels was investigated by immunohistology in paraffin sections of 12 adult human spleens using a panel of antibodies. Double staining for CD34 and CD141 (thrombomodulin) revealed that capillary endothelia in the cords of the splenic red pulp and at the surface of follicles were CD34+CD141, while red pulp sinus endothelia had the phenotype CD34CD141+. Only in the direct vicinity of splenic follicles did sinus endothelial cells exhibit both antigens. Thus, splenic sinuses do not replace conventional capillaries, but exist in addition to such vessels. The endothelium in arterioles, venules and larger arteries and veins was uniformly CD34+CD141+. Anti-CD34 and anti-CD141 both additionally reacted with different types of splenic stromal cells. Differential staining of capillaries and sinuses may permit a three-dimensional reconstruction of serial sections to unequivocally delineate the “open” and “closed” splenic circulation in humans.  相似文献   

18.
Dendritic cells are migratory cells. Before they extravasate from the circulation into the skin across capillary blood vessel walls, they have to interact with endothelial cells. Using a fluorimetric adhesion assay, we have recently shown that CD34+-derived dendritic cell precursors are able to bind to resting and stimulated dermal microvascular endothelial cells. In the present study, we attempted to visualize this process at an ultrastructural level. CD34+ progenitor cells were purified from human cord blood samples by means of immunomagnetic beads, and dendritic cells were generated by culture in the presence of GM-CSF, TNF- and hSCF for 5 days. Immature CD83 CD86low dendritic cells were added to human dermal microvascular endothelial cells grown to confluence on membrane chambers. After 2 h, unbound dendritic cell precursors were removed, and bound cells were prepared for routine scanning electron microscopy. We found that (1) dendritic cell precursors firmly adhere to microvascular endothelial cells, enveloping them with their surface processes; (2) dendritic cell precursors are extremely deformable as they squeeze through the dense network of microvascular endothelial cells; (3) microvascular endothelial cells form, in part, a multi-layered network rather than the typical cobblestone pattern as seen by phase-contrast microscopy. The morphology of dendritic cell precursors and of human dermal microvascular endothelial cells was examined here, for the first time, by scanning electron microscopy. These data further emphasize that CD34+-derived dendritic cells efficiently adhere to dermal microvascular endothelial cells.  相似文献   

19.

Aims

To examine the effects of route of administration and activation status on the ability of dendritic cells (DC) to accumulate in secondary lymphoid organs, and induce expansion of CD8+ T cells and anti-tumor activity.

Methods

DC from bone marrow (BM) cultures were labeled with fluorochromes and injected s.c. or i.v. into naïve mice to monitor their survival and accumulation in vivo. Percentages of specific CD8+ T cells in blood and delayed tumor growth were used as readouts of the immune response induced by DC immunization.

Results

The route of DC administration was critical in determining the site of DC accumulation and time of DC persistence in vivo. DC injected s.c. accumulated in the draining lymph node, and DC injected i.v. in the spleen. DC appeared in the lymph node by 24 h after s.c. injection, their numbers peaked at 48 h and declined at 96 h. DC that had spontaneously matured in vitro were better able to migrate compared to immature DC. DC were found in the spleen at 3 h and 24 h after i.v. injection, but their numbers were low and declined by 48 h. Depending on the tumor cell line used, DC injected s.c. were as effective or more effective than DC injected i.v. at inducing anti-tumor responses. Pre-treatment with LPS increased DC accumulation in lymph nodes, but had no detectable effect on accumulation in the spleen. Pre-treatment with LPS also improved the ability of DC to induce CD8+ T cell expansion and anti-tumor responses, regardless of the route of DC administration.

Conclusions

Injection route and activation by LPS independently determine the ability of DC to activate tumor-specific CD8+ T cells in vivo.
  相似文献   

20.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号