首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two smooth muscle myosin heavy chain isoforms differ in their amino terminus by the presence [(+)insert] or absence [(–)insert] of a seven-amino acid insert. Animal studies show that the (+)insert isoform is predominantly expressed in rapidly contracting phasic muscle and the (–)insert isoform is mostly found in slowly contracting tonic muscle. The expression of the (+)insert isoform has never been demonstrated in human smooth muscle. We hypothesized that the (+)insert isoform is present in humans and that its expression is commensurate with the organ's functional requirements. We report, for the first time, the sequence of the human (+)insert isoform and quantification of its expression by real-time PCR and Western blot analysis in a panel of human organs. The (+)insert isoform mRNA and protein expression levels are significantly greater in small intestine compared with all organs studied except for trachea and are significantly greater in trachea compared with uterus and aorta. To assess the functional significance of this differential myosin isoform expression between organs, we measured the rate of actin filament movement (max) when propelled by myosin purified from rat organs, because the rat and human inserts are identical and their remaining sequences show 93% identity. max exhibits a rank correlation from the most tonic to the most phasic organ. The selective expression of the (+)insert isoform observed among human organs suggests that it is an important determinant of tissue shortening velocity. A differential expression of the (+)insert isoform could also account for altered contractile properties observed in human pathology. phasic and tonic smooth muscle; real-time polymerase chain reaction; in vitro motility assay  相似文献   

2.
Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.  相似文献   

3.
Mechanical properties and isoform composition of myosin heavy and light chains were studied in hypertrophying rat urinary bladders. Growth of the bladder was induced by partial ligation of the urethra. Preparations were obtained after 10 days. In maximally activated skinned preparations from the hypertrophying tissue, the maximal shortening velocity and the rate of force development following photolytic release of ATP were reduced by about 20 and 25%, respectively. Stiffness was unchanged. The relative content of the basic isoform of the essential 17 kDa myosin light chain was doubled in the hypertrophied tissue. The expression of myosin heavy chain with a 7 amino acid insert at the 25K/50K region was determined using a peptide-derived antibody against the insert sequence. The relative amount of heavy chain with insert was decreased to 50%, in the hypertrophic tissue. The kinetics of the cross-bridge turn-over in the newly formed myosin in the hypertrophic smooth muscle is reduced, which might be related to altered expression of myosin heavy or light chain isoforms. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Contractility of the proximal and distal vaginal wall smooth muscle may play distinct roles in the female sexual response and pelvic support. The goal of this study was to determine whether differences in contractile characteristics of smooth muscle from these regions reside in differences in the expression of isoforms of myosin, the molecular motor for muscle contraction. Adult female Sprague-Dawley rats were killed on the day of estrus, and the vagina was dissected into proximal and distal segments. The Vmax at peak force was greater for tissue strips of the proximal vagina compared with that of distal (P < 0.01), although, at steady state, the Vmax for the muscle strips from the two regions was not different. Furthermore, at steady state, muscle stress was higher (P < 0.001) for distal vaginal strips (n = 5). Consistent with the high Vmax for the proximal vaginal strips, RT-PCR results revealed a higher %SM-B (P < 0.001) in the proximal vagina. A greater expression of SM-B protein (P < 0.001) was also detected by Western blotting (n = 4). Interestingly, there was no regional difference noted in SM-1/SM-2 isoforms (n = 6). The proximal vagina had a higher expression of myosin heavy chain protein (P < 0.01) and a greater percentage of smooth muscle bundles (P < 0.001). The results of this study are the first demonstration of a regional heterogeneity in Vmax and myosin isoform distribution in the vagina wall smooth muscle and confirm that the proximal vaginal smooth muscle exhibits phasic contractile characteristics compared with the distal vaginal smooth muscle, which is tonic.  相似文献   

5.
Smooth muscle myosin phosphatasedephosphorylates the regulatory myosin light chain and thus mediatessmooth muscle relaxation. The activity of this myosin phosphatase isdependent upon its myosin-targeting subunit (MYPT1). Isoforms of MYPT1have been identified, but how they are generated and their relationship to smooth muscle phenotypes is not clear. Cloning of the middle sectionof chicken and rat MYPT1 genes revealed that each gene gave rise toisoforms by cassette-type alternative splicing of exons. In chicken, a123-nucleotide exon was included or excluded from the mature mRNA,whereas in rat two exons immediately downstream were alternative. MYPT1isoforms lacking the alternative exon were only detected in maturechicken smooth muscle tissues that display phasic contractileproperties, but the isoform ratios were variable. The patterns ofexpression of rat MYPT1 mRNA isoforms were more complex, with threemajor and two minor isoforms present in all smooth muscle tissues atvarying stoichiometries. Isoform switching was identified in thedeveloping chicken gizzard, in which the exon-skipped isoform replacedthe exon-included isoform around the time of hatching. This isoformswitch occurred after transitions in myosin heavy chain and myosinlight chain (MLC17) isoforms and correlated with aseveralfold increase in the rate of relaxation. The developmentalswitch of MYPT1 isoforms is a good model for determining the mechanismsand significance of alternative splicing in smooth muscle.

  相似文献   

6.
A previously unrecognized nonmuscle myosin II heavy chain (NMHC II), which constitutes a distinct branch of the nonmuscle/smooth muscle myosin II family, has recently been revealed in genome data bases. We characterized the biochemical properties and expression patterns of this myosin. Using nucleotide probes and affinity-purified antibodies, we found that the distribution of NMHC II-C mRNA and protein (MYH14) is widespread in human and mouse organs but is quantitatively and qualitatively distinct from NMHC II-A and II-B. In contrast to NMHC II-A and II-B, the mRNA level in human fetal tissues is substantially lower than in adult tissues. Immunofluorescence microscopy showed distinct patterns of expression for all three NMHC isoforms. NMHC II-C contains an alternatively spliced exon of 24 nucleotides in loop I at a location analogous to where a spliced exon appears in NMHC II-B and in the smooth muscle myosin heavy chain. However, unlike neuron-specific expression of the NMHC II-B insert, the NMHC II-C inserted isoform has widespread tissue distribution. Baculovirus expression of noninserted and inserted NMHC II-C heavy meromyosin (HMM II-C/HMM II-C1) resulted in significant quantities of expressed protein (mg of protein) for HMM II-C1 but not for HMM II-C. Functional characterization of HMM II-C1 by actin-activated MgATPase activity demonstrated a V(max) of 0.55 + 0.18 s(-1), which was half-maximally activated at an actin concentration of 16.5 + 7.2 microm. HMM II-C1 translocated actin filaments at a rate of 0.05 + 0.011 microm/s in the absence of tropomyosin and at 0.072 + 0.019 microm/s in the presence of tropomyosin in an in vitro motility assay.  相似文献   

7.
Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization.  相似文献   

8.
Rabbit smooth muscles contain at least three types of myosin heavy chain (MHC) isoforms; SM1, SM2 and SMemb (NMHC-B), the expression of which is developmentally regulated. We have recently reported that smooth muscles with the embryonic phenotype accumulate in the neointimas produced by endothelial denudation or high-cholesterol feeding. In this study, we examined MHC isoform expression in the neointimas and the media of poststenotic dilatation of the rabbit carotid artery, and determined the phenotype of the smooth muscle cell in the dilated segment. We report here that neointimal cells in the dilated segment are smooth muscle cells with the embryonic phenotype as previously reported in our ballooning-injury study. The medial smooth muscles, however, are composed of heterogeneous population of smooth muscles which differ in stage of differentiation as determined by the MHC isoform expression. These results indicate that MHC isoforms are useful molecular markers to identify abnormally proliferating smooth muscles in diseased arteries and to understand the process of atherogenesis occurring following vascular injury.  相似文献   

9.
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed–two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin–myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin–myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.  相似文献   

10.
11.
In vitro experiments showing the activation of the myosin phosphatase via heterophilic leucine zipper interactions between its targeting subunit (MYPT1) and cGMP-dependent protein kinase I suggested a pathway for smooth muscle relaxation (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). The relationship between MYPT1 isoform expression and smooth muscle responses to cGMP signaling in vivo has not been explored. MYPT1 isoforms that contain or lack a C-terminal leucine zipper are generated in birds and mammals by cassette-type alternative splicing of a 31-nucleotide exon. The avian and mammalian C-terminal isoforms are highly conserved and expressed in a tissue-specific fashion. In the mature chicken the tonic contracting aorta and phasic contracting gizzard exclusively express the leucine zipper positive and negative MYPT1 isoforms, respectively. Expression of the MYPT1 isoforms is also developmentally regulated in the gizzard, which switches from leucine zipper positive to negative isoforms around the time of hatching. This switch coincides with the development in the gizzard of a cGMP-resistant phenotype, i.e. inability to dephosphorylate myosin and relax in response to 8-bromo-cGMP after calcium activation. Furthermore, association of cGMP-dependent protein kinase I with MYPT1 is detected by immunoprecipitation only in the tissue that expresses the leucine zipper positive isoform of MYPT1. These results suggest that the regulated splicing of MYPT1 is an important determinant of smooth muscle phenotypic diversity and the variability in the response of smooth muscles to the calcium desensitizing effect of cGMP signaling.  相似文献   

12.
13.
To investigate the molecular functions of the regions encoded by alternative exons from the single Drosophila myosin heavy chain gene, we made the first kinetic measurements of two muscle myosin isoforms that differ in all alternative regions. Myosin was purified from the indirect flight muscles of wild-type and transgenic flies expressing a major embryonic isoform. The in vitro actin sliding velocity on the flight muscle isoform (6.4 microm x s(-1) at 22 degrees C) is among the fastest reported for a type II myosin and was 9-fold faster than with the embryonic isoform. With smooth muscle tropomyosin bound to actin, the actin sliding velocity on the embryonic isoform increased 6-fold, whereas that on the flight muscle myosin slightly decreased. No difference in the step sizes of Drosophila and rabbit skeletal myosins were found using optical tweezers, suggesting that the slower in vitro velocity with the embryonic isoform is due to altered kinetics. Basal ATPase rates for flight muscle myosin are higher than those of embryonic and rabbit myosin. These differences explain why the embryonic myosin cannot functionally substitute in vivo for the native flight muscle isoform, and demonstrate that one or more of the five myosin heavy chain alternative exons must influence Drosophila myosin kinetics.  相似文献   

14.
We have investigated the time course of expression of the alpha and beta triad junctional foot proteins in embryonic chick pectoral muscle. The level of [3H]ryanodine binding in muscle homogenates is low until day E20 of embryonic development, then increases dramatically at the time of hatching reaching adult levels by day N7 posthatch. The alpha and beta foot protein isoforms increase in abundance concomitantly with [3H]ryanodine binding. Using foot protein isoform-specific antibodies, the alpha foot protein is detected in a majority of fibers in day E10 muscle, while the beta isoform is first observed at low levels in a few fibers in day E15 muscle. A high molecular weight polypeptide, distinct from the alpha and beta proteins, is recognized by antifoot protein antibodies. This polypeptide is observed in day E8 muscle and declines in abundance with continued development. It appears to exist as a monomer and does not bind [3H]ryanodine. In contrast, the alpha isoform present in day E10 muscle and the beta isoform in day E20 muscle are oligomeric and bind [3H]ryanodine suggesting that they may exist as functional calcium channels in differentiating muscle. Comparison of the intracellular distributions of the alpha foot protein, f-actin, the heavy chain of myosin and titin in day E10 muscle indicates that the alpha foot protein is expressed during myofibril assembly and Z line formation. The differential expression of the foot protein isoforms in developing muscle, and their continued expression in mature muscle, is consistent with these proteins making different functional contributions. In addition, the expression of the alpha isoform during the time of organization of a differentiated muscle morphology suggests that foot proteins may participate in events involved in muscle differentiation.  相似文献   

15.
16.
The expression of the gene 2 sarcoplasmic/endoplasmic-reticulum Ca2(+)-pump isoforms (SERCA2a and SERCA2b) and of phospholamban was studied in pig smooth muscle of the stomach, longitudinal ileum, pulmonary artery and aorta. mRNA levels were determined using an RNAase protection assay. The SERCA2 isoforms and phospholamban were tested on Western blots with a panel of antibodies, some of which were isoform-specific. The pig smooth-muscle tissues all contained comparable SERCA2 mRNA levels, but these levels were 10-20-fold lower than SERCA2 mRNA levels in cardiac muscle. Of the SERCA2 mRNAs in smooth muscle, 72-81% encoded the non-muscle isoform (SERCA2b), and Western blot analysis with isoform-specific antibodies confirmed that the SERCA2b isoform is the predominant endoplasmic-reticulum Ca2(+)-pump in smooth muscle. In contrast with SERCA2 mRNA levels, phospholamban mRNA levels varied by 12-fold between the different pig smooth-muscle tissues, with low and very low levels in the pig pulmonary artery and the pig aorta respectively. The differential expression of phospholamban was also confirmed on Western blots. The finding that the phospholamban content varied between the different smooth-muscle tissues whereas the SERCA2 expression remained rather constant indicates that, in pig smooth muscle, the expression of phospholamban is not coupled with that of SERCA2.  相似文献   

17.
Two types of smooth muscle myosin heavy chain (MHC) isoforms, SM1 and SM2, were recently identified to have different carboxyl termini (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). SM1 and SM2 are considered to be generated from a single gene through alternative RNA splicing. In this study we investigated expression of vascular MHC isoforms during development in rabbits at the mRNA, protein, and histological levels. In adults, all smooth muscle cells reacted with both anti-SM1 and anti-SM2 antibodies on immunofluorescence, suggesting the coexpression of SM1 and SM2 in a single cell. In fetal and perinatal rabbits, however, only anti-SM1 antibody consistently reacted with smooth muscles. Reactivity with anti-SM2 antibody was negative in the fetal and neonatal blood vessels and gradually increased during 30 days after birth. These developmental changes in SM1 and SM2 expression at the histological level coincided with mRNA expression of each MHC isoform as determined by S1 nuclease mapping, indicating that expression of SM1 and SM2 is controlled at the level of RNA splicing. However, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin from fetal and perinatal aortas revealed the presence of large amount of SM2. Interestingly, fetal SM2 did not cross-react with our anti-SM2 antibody on immunoblotting. We conclude that expression of SM1 and SM2 are differentially regulated during development and that a third type of MHC isoform may exist in embryonic and perinatal vascular smooth muscles.  相似文献   

18.
The myosin 20,000-D regulatory light chain (RLC) has a central role in smooth muscle contraction. Previous work has suggested either the presence of two RLC isoforms, one specific for nonmuscle and one specific for smooth muscle, or the absence of a true smooth muscle-specific isoform, in which instance smooth muscle cells would use nonmuscle isoforms. To address this issue directly, we have isolated rat RLC cDNAs and corresponding genomic sequences of two smooth muscle RLC based on homology to the amino acid sequence of the chicken gizzard RLC. These cDNAs are highly homologous in their amino acid coding regions and contain unique 3'-untranslated regions. RNA analyses of rat tissue using these unique 3'-untranslated regions revealed that their expression is differentially regulated. However, one cDNA (RLC-B), predominantly a nonmuscle isoform, based on abundant expression in nonmuscle tissues including brain, spleen, and lung, is easily detected in smooth muscle tissues. The other cDNA (RLC-A; see Taubman, M., J. W. Grant, and B. Nadal-Ginard. 1987. J. Cell Biol. 104:1505-1513) was detected in a variety of nonmuscle, smooth muscle, and sarcomeric tissues. RNA analyses comparing expression of both RLC genes with the actin gene family and smooth muscle specific alpha-tropomyosin demonstrated that neither RLC gene was strictly smooth muscle specific. RNA analyses of cell lines demonstrated that both of the RLC genes are expressed in a variety of cell types. The complete genomic structure of RLC-A and close linkage to RLC-B is described.  相似文献   

19.
Smooth muscle relaxation in response to NO signaling is due, in part, to a Ca(2+)-independent activation of myosin light chain (MLC) phosphatase by protein kinase G Iα (PKGIα). MLC phosphatase is a trimeric complex of a 20-kDa subunit, a 38-kDa catalytic subunit, and a 110-133-kDa myosin-targeting subunit (MYPT1). Alternative mRNA splicing produces four MYPT1 isoforms, differing by the presence or absence of a central insert and leucine zipper (LZ). The LZ domain of MYPT1 has been shown to be important for PKGIα-mediated activation of MLC phosphatase activity, and changes in LZ+ MYPT1 isoform expression result in changes in the sensitivity of smooth muscle to NO-mediated relaxation. Furthermore, PKGIα has been demonstrated to phosphorylate Ser-694 of MYPT1, but phosphorylation at this site does not always accompany cGMP-mediated smooth muscle relaxation. This study was designed to determine whether MYPT1 isoforms are differentially phosphorylated by PKGIα. The results demonstrate that purified LZ+ MYPT1 fragments are rapidly phosphorylated by PKGIα at Ser-667 and Ser-694, whereas fragments lacking the LZ domain are poor PKGIα substrates. Mutation of Ser-667 and Ser-694 to Ala and/or Asp showed that Ser-667 phosphorylation is more rapid than Ser-694 phosphorylation, suggesting that Ser-667 may play an important role in the activation of MLC phosphatase. These results demonstrate that MYPT1 isoform expression is important for determining the heterogeneous response of vascular beds to NO and NO-based vasodilators, thereby playing a central role in the regulation of vascular tone in health and disease.  相似文献   

20.
Besides driving contraction of various types of muscle tissue, conventional (class II) myosins serve essential cellular functions and are ubiquitously expressed in eukaryotic cells. Three different isoforms in the human myosin complement have been identified as non-muscle class II myosins. Here we report the kinetic characterization of a human non-muscle myosin IIB subfragment-1 construct produced in the baculovirus expression system. Transient kinetic data show that most steps of the actomyosin ATPase cycle are slowed down compared with other class II myosins. The ADP affinity of subfragment-1 is unusually high even in the presence of actin filaments, and the rate of ADP release is close to the steady-state ATPase rate. Thus, non-muscle myosin IIB subfragment-1 spends a significantly higher proportion of its kinetic cycle strongly attached to actin than do the muscle myosins. This feature is even more pronounced at slightly elevated ADP levels, and it may be important in carrying out the cellular functions of this isoform working in small filamentous assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号