首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
尹彩春  赵文武 《生态学报》2021,41(23):9536-9542
2021年2月18日,联合国环境署发布《与自然和谐共处:应对气候、生物多样性和污染危机的科学蓝图》。报告指出:气候变化、生物多样性下降和环境污染已经成为全球三大环境紧急情况;人与自然关系面临着社会经济发展压力加剧环境风险、遏制环境恶化的全球承诺尚未兑现、环境风险威胁可持续发展目标等多重挑战;全球亟需开展以联合国可持续发展目标为框架的系统变革,加快应对全球环境危机的重点行动,改革资源环境和经济系统,提高粮食、能源和水系统的环境友好性与可持续性,加强对人体健康与生态环境健康的协同保护,进而推动人与自然的和谐共处以及可持续发展。该报告结合全球环境评估的最新进展,强调了社会-经济-环境可持续发展仍是未来的重要研究课题,对我国社会-生态系统与可持续发展等领域的科学研究有如下启示:(1)创新社会-生态系统的综合集成研究,探寻不同发展路径和气候变化情景下社会-生态系统时空演变特征与趋势;(2)注重科学研究对决策的支撑以及与国际重大议程的衔接,探索和创新可持续发展的中国方案。  相似文献   

2.
    
Thermal performance curves (TPCs) compute the effects of temperature on the performance of ectotherms and are frequently used to predict the effect of environmental conditions and currently, climate change, on organismal vulnerability and sensitivity. Using Drosophila melanogaster as an animal model, we examined how different thermal environments affected the shape of the performance curve and their parameters. We measured the climbing speed as a measure of locomotor performance in adult flies and tested the ontogenetic and transgenerational effects of thermal environment on TPC shape. Parents and offspring were reared at 28 ± 0ºC (28C), 28 ± 4ºC (28V), and 30 ± 0ºC (30C). We found that both, environmental thermal variability (28V) and high temperature (30C) experienced during early ontogeny shaped the fruit fly TPC sensitivity. Flies reared at variable thermal environments shifted the TPC to the right and increased heat tolerance. Flies held at high and constant temperature exhibited lower maximum performance than flies reared at the variable thermal environment. Furthermore, these effects were extended to the next generation. The parental thermal environment had a significative effect on TPC and its parameters. Indeed, flies reared at 28V whose parents were held at a high and constant temperature (30C) had a lower heat tolerance than F1 of flies reared at 28C or 28V. Also, offspring of flies reared at variable thermal environment (28V) reached the maximum performance at a higher temperature than offspring of flies reared at 28C or 30C. Consequently, since TPC parameters are not fixed, we suggest cautiousness when using TPCs to predict the impact of climate change on natural populations.  相似文献   

3.
Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species.  相似文献   

4.
  总被引:1,自引:0,他引:1  
Spined loach Cobitis taenia developed successfully between 0·12 and 4·80‰ salinity. At 6·00‰, net production was strongly reduced, and development failed at or above 7·20‰. Below 0·12‰ S, net production became variable, indicating restrictive effects. In comparison with other primary freshwater fish species C. taenia has a low sensitivity to salinity. The upper limit for early development was equal to the highest salinity under which C. taenia adults are found along the Baltic coast. Therefore, salinity should not limit early development within the brackish habitats of spined loach.  相似文献   

5.
杨玉盛 《生态学报》2017,37(1):1-11
随着全球环境变化和人类活动对生态系统影响的日益加深,生态系统结构和功能发生强烈变化,生态系统提供各类资源和服务的能力在显著下降。在这种背景下,全面认识生态系统的结构功能与全球环境变化的关系已成为当前生态学研究的热点之一。本文综述了全球环境变化对典型生态系统(包括森林生态系统、河口湿地生态系统、城市生态系统)影响以及全球环境变化适应的研究现状,分析研究面临的困难及挑战。在此基础上,提出对未来研究发展趋势的展望。在森林生态系统与全球环境变化研究上,未来应重视能更好模拟现实情景的、多因子、长期的全球环境变化控制试验,并注重不同生物地球化学循环之间的耦合作用。在湿地生态系统与全球环境变化研究上,未来应加强氮沉降、硫沉降及盐水入侵对湿地生态系统碳氮循环的影响,明晰滨海湿地的蓝碳功能,加强极端气候和人类干扰影响下湿地生态系统结构和功能变化及恢复力的研究。在城市生态系统与全球环境变化研究上,未来应深化城市生物地球化学循环机制研究,实现城市生态系统的人本需求侧重与转向,并开展典型地区长期、多要素综合响应研究。在全球环境变化适应研究上,未来应构架定量化、跨尺度的适应性评价体系,加强典型区域/部门的适应性研究以及适应策略实施的可行性研究,注重适应与减缓对策的关联研究及实施的风险评估。期望本综述为我国生态系统与全球环境变化研究提供一些参考。  相似文献   

6.
    
Heat stress is a global issue constraining pig productivity, and it is likely to intensify under future climate change. Technological advances in earth observation have made tools available that enable identification and mapping livestock species that are at risk of exposure to heat stress due to climate change. Here, we present a methodology to map the current and likely future heat stress risk in pigs using R software by combining the effects of temperature and relative humidity. We applied the method to growing-finishing pigs in Uganda. We mapped monthly heat stress risk and quantified the number of pigs exposed to heat stress using 18 global circulation models and projected impacts in the 2050s. Results show that more than 800 000 pigs in Uganda will be affected by heat stress in the future. The results can feed into evidence-based policy, planning and targeted resource allocation in the livestock sector.  相似文献   

7.
    
Abstract This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ~0.8°C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4–2.0°C by 2030 (relative to 1990) and 1.0–6.0°C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Niño Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover. Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO2 has not been incorporated into most modelling studies. Elevated CO2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as bioclim consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5–1.0°C of warming. Australia lacks the long‐term datasets and tradition of phenological monitoring that have allowed the detection of climate‐change‐related trends in the Northern Hemisphere. Long‐term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO2 into climatic modelling for vegetation and selecting suitable species as indicators of climate‐induced change.  相似文献   

8.
    
Climate change poses a serious threat to the existence of many species. The combination of habitat fragmentation and increasing temperatures is of particular concern because it can alter demographic and population genetic processes, which may ultimately lead to extinction. Locomotion is very important in mitigating the negative impacts of these processes by upholding migration and contributing to random mating within and between populations. In the present study, a T‐maze, constituting a relatively complex laboratory assay, is used to investigate whether inbreeding affects the capacity to reach a food source in male Drosophila melanogaster Meigen 1830 (Diptera: Drosophilidae) reared at 20, 25 or 30 °C, respectively. The effects of inbreeding and crossbreeding are highly temperature‐specific. Strong heterosis for the ability to reach food in the maze is observed in flies developed and maintained at 30 °C, whereas inbred flies locate the food significantly faster than crossbreds when reared at 25 °C in four of six runs. No clear pattern is evident in flies reared at 20 °C. The results suggest that complex traits such as locomotor performance in a maze are highly informative in the evaluation and detection of inbreeding depression under different thermal conditions. The effect of inbreeding is most pronounced at high temperature, which is a characteristic of the conditions that many natural populations may have to face under climate change.  相似文献   

9.
    
Differences in thermal tolerance during embryonic development in Fraser River sockeye salmon Oncorhynchus nerka were examined among nine populations in a controlled common‐garden incubation experiment. Forcing embryonic development at an extreme temperature (relative to current values) of 16° C, representing a future climate change scenario, significantly reduced survival compared to the more ecologically moderate temperature of 10° C (55% v. 93%). Survival at 14° C was intermediate between the other two temperatures (85%). More importantly, this survival response varied by provenance within and between temperature treatments. Thermal reaction norms showed an interacting response of genotype and environment (temperature), suggesting that populations of O. nerka may have adapted differentially to elevated temperatures during incubation and early development. Moreover, populations that historically experience warmer incubation temperatures at early development displayed a higher tolerance for warm temperatures. In contrast, thermal tolerance does not appear to transcend life stages as adult migration temperatures were not related to embryo thermal tolerance. The intra‐population variation implies potential for thermal tolerance at the species level. The differential inter‐population variation in thermal tolerance that was observed suggests, however, limited adaptive potential to thermal shifts for some populations. This infers that the intergenerational effects of increasing water temperatures may affect populations differentially, and that such thermally mediated adaptive selection may drive population, and therefore species, persistence.  相似文献   

10.
    
Understanding challenges posed by climate change to estuaries and their faunas remains a high priority for managing these systems and their communities. Freshwater discharge into a range of estuary types in south‐western Australia between 1990 and 2015 is shown to be related to rainfall. This largely accounts for decreases in discharge in this microtidal region being more pronounced on the west coast than south coast, where rainfall decline was less. Results of an oxygen‐balance model imply that, as demonstrated by empirical data for the Swan River Estuary, declines in discharge into a range of estuary types would be accompanied by increases in the extent of hypoxia. In 2013–15, growth and body condition of the teleost Acanthopagrus butcheri varied markedly among three permanently open, one intermittently‐open, one seasonally‐closed and one normally‐closed estuary, with average time taken by females to reach the minimum legal length (MLL) of 250 mm ranging from 3.6 to 17.7 years. It is proposed that, in a given restricted period, these inter‐estuary variations in biological characteristics are related more to differences in factors, such as food resources and density, than to temperature and salinity. The biological characteristics of A. butcheri in the four estuaries, for which there are historical data, changed markedly between 1993–96 and 2013–15. Growth of both sexes, and also body condition in all but the normally‐closed estuary, declined, with females taking between 1.7 and 2.9 times longer to attain the MLL. Irrespective of period, body condition, and growth are positively related. Age at maturity typically increased between periods, but length at maturity declined only in the estuary in which growth was greatest. The plasticity of the biological characteristics of A. butcheri, allied with confinement to its natal estuary and ability to tolerate a wide range of environmental conditions, makes this sparid and comparable species excellent subjects for assessing estuarine “health.”  相似文献   

11.
12.
Will warming climate increase the risk or prevalence of mosquito-borne disease in Australia, as has been projected in a number of scientific publications and governmental reports? Unfortunately, most of these 'predictions' do not adequately consider the current and historical distribution of the vectors and diseases, their local ecology and epidemiology and the impact of societal features and the capacity for public health interventions in Australia. Overall, a strong case can be made that we are unlikely to see significant changes in the distribution of transmission of the exotic pathogens causing malaria and dengue, and while activity of endemic arboviruses such as Murray Valley encephalitis and Ross River viruses may possibly increase in some areas, it is likely to decrease in others. The ecologies of mosquito-borne diseases can be complex and difficult to predict, and any evaluation of potential effects of changes in climate will need a detailed examination of site-specific vector, host and other factors likely to influence the outcomes on human health. Of itself, climate change as currently projected, is not likely to provide great cause for public health concern with mosquito-borne disease in Australia.  相似文献   

13.
    

Motivation

Host to intricate networks of marine species, coral reefs are among the most biologically diverse ecosystems on Earth. Over the past few decades, major degradations of coral reefs have been observed worldwide, which is largely attributed to the effects of climate change and local stressors related to human activities. Now more than ever, characterizing how the environment shapes the dynamics of the reef ecosystem (e.g., shifts in species abundance, community changes, emergence of locally adapted populations) is key to uncovering the environmental drivers of reef degradation, and developing efficient conservation strategies in response. To achieve these objectives, it is pivotal that environmental data describing the processes driving such ecosystem dynamics, which occur across specific spatial and temporal scales, are easily accessible to coral reef researchers and conservation stakeholders alike.

Main types of variable contained

Multiple environmental variables characterizing various facets of the reef environment, including water chemistry and physics (e.g., temperature, pH, chlorophyll concentration), local anthropogenic pressures (e.g., boat traffic, distance from agricultural or urban areas) and sea currents patterns.

Spatial location and grain

Worldwide reef cells of 5 by 5 km.

Time period and grain

Last 3–4 decades, monthly and yearly resolution.

Major taxa and level of measurement

Environmental data important for coral reefs and associated biodiversity.

Software format

Interactive web application available at https://recifs.epfl.ch .  相似文献   

14.
    
On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature‐induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex‐specific tolerance of temperature‐related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.  相似文献   

15.
    
Understanding adaptation has become one of the major biological questions especially in the light of rapid environmental changes induced by climate change. Ocean temperatures are rising which triggers massive changes in water chemistry and thereby alters the living environment of all marine organisms. Studying adaptation, however, can be tricky because spatial genetic patterns might also occur due to random effects, for example, genetic drift. Genetic drift is reduced in very large and well‐connected populations, such as in broadcast marine spawning organisms. Here, spatial genetic divergence is likely to be produced by selection. In this issue of Molecular Ecology, Sandoval‐Castillo et al. (2018) investigated patterns of spatial genetic divergence and their association with environmental factors in the greenlip abalone (Haliotis laevigata). This commercially important species of mollusc is a broadcast spawner with large population sizes, rendering genetic drift an unlikely factor in the genetic divergence of wild populations. Sandoval‐Castillo et al. (2018) used a ddRAD genomic approach to test for genetic divergence between sampled populations while also measuring different environmental factors, for example, water temperature and oxygen content. The majority of identified SNPs was putatively neutral and showed only low levels of genetic divergence between field sites. However, 323 candidate adaptive markers were identified that clearly separated the individuals into five different clusters. These genetic clusters correlated with environmental clusters mainly determined by water temperature and (correlated) oxygen concentration. Gene annotation of the candidate SNPs revealed a large proportion of loci being involved in biological processes influenced by oxygen availability. The study by Sandoval‐Castillo et al. (2018) in this issue of Molecular Ecology exemplifies the benefits of combining genomic studies with ecological data. It is a great starting point for more detailed (gene function, physiology) as well as broader (biodiversity) investigations that might help us to better understand adaptation and predict ecosystems' resilience and resistance to environmental disturbances. In addition, this information can be applied to implement optimal conservation regime policies and sustainable harvesting strategies, hopefully protecting biodiversity as well as commercial interests in marine life.  相似文献   

16.
    
Broadacre livestock production is a major but highly diverse component of agriculture in Australia that will be significantly exposed to predicted changes in climate over coming decades. We used the GRAZPLAN simulation models to assess the impacts of climate change under the SRES A2 scenario across southern Australia. Climate change impacts were examined across space (25 representative locations) and time (1970–99, 2030, 2050 and 2070 climate) for each of five livestock enterprises. Climate projection uncertainty was considered by analysing projections from four global circulation models (GCMs). Livestock production scenarios were compared at their profit‐maximizing stocking rate, constrained to ensure that risks of soil erosion were acceptable. Impacts on net primary productivity (ANPP) varied widely between GCM projections; the average declines from historical climate were 9% in 2030, 7% in 2050 and 14% in 2070. Declines in ANPP were larger at lower‐rainfall locations. Sensitivity of ANPP to changes in rainfall ranged from 0.4 to 1.7, to temperature increase from ?0.15 to +0.07 °C?1 and to CO2 increase from 0.11 to 0.32. At most locations the dry summer period lengthened, exacerbating the greater erosion risk due to lower ANPP. Transpiration efficiency of pastures increased by 6–25%, but the proportion of ANPP that could safely be consumed by livestock fell sharply so that operating profit (at constant prices) fell by an average of 27% in 2030, 32% in 2050 and 48% in 2070. This amplification of ANPP reductions into larger profitability declines is likely to generalize to other extensive livestock systems. Profit declines were most marked at drier locations, with operating losses expected at 9 of the 25 locations by 2070. Differences between livestock enterprises were smaller than differences between locations and dates. Future research into climate change impacts on Australian livestock production needs to emphasise the dry margin of the cereal‐livestock zone.  相似文献   

17.
  1. Over the past 65 my, the Australian continent experienced a pronounced shift from predominantly wet, tropical, conditions to a much drier climate. Little is known, however, about the effect of this important continent‐wide event on freshwater organisms and ecosystems. Fairy shrimps (Crustacea; Anostraca) are ancient and specialist inhabitants of temporary and saline aquatic habitats that typically prevail under semiarid conditions. Therefore, they present suitable evolutionary models to study scenarios of historic environmental change and the impact of a drying climate on aquatic ecosystems in particular.
  2. Focussing on both macro‐ and micro‐evolution in the fairy shrimp genus Branchinella and using mitochondrial DNA data (16S and COI), we evaluated whether patterns of contemporary genetic variation reflect historic climate change.
  3. There is a close match between episodes of Cenozoic climate change and macro‐evolutionary diversification in Australian fairy shrimps, presumably mediated by a progressive increase in the abundance and diversity of temporary aquatic habitats on the continent. Micro‐evolutionary patterns reflect both range expansion and recent contraction, linked to extreme drying events during the Pleistocene glacial periods.
  4. This study effectively illustrates the potential long‐term effects of environmental change on the diversity and the evolutionary trajectories of the fauna of temporary waters. Moreover, it demonstrates the importance of adaptation to new environments and non‐adaptive processes, such as divergence in isolation, for explaining extant diversity patterns in this particular environment.
  相似文献   

18.
    
The Kutch region of western India (Gujarat State) is today arid to semiarid and characterised by mostly ephemeral streams which carry water during the monsoon. The uneven distribution of rainfall and disturbed topography are the result of climate change during the Cenozoic period. Two fossil woods, namely Bauhinium palaeomalabaricum Prakash and Prasad (Fabaceae) and Ebenoxylon indicum Ghosh and Kazmi (Ebenaceae), are described from Kutch in order to provide insights into the palaeovegetation and palaeoclimate. Because the modern representatives of the present and previously described taxa from the same horizon are thermophilic in nature and grow in evergreen to deciduous forests, a warm and humid climate is interpreted. Furthermore, the finding of some mangrove taxa in the assemblage indicates the lagoonal to intertidal environment at the time of deposition.  相似文献   

19.
    
Anthropogenic climate change poses substantial challenges to biodiversity conservation. Effects of climate change on summer conditions and associated heat and desiccation stress have attracted much research interest, while the implications of changing winter conditions on hibernation have hitherto received fairly little attention. This is surprising as the latter may also strongly affect biodiversity. By investigating the effects of overwintering conditions on diapause and postdiapause survival in a temperate-zone butterfly, we found that warmer and moister winter conditions substantially decreased survival rates. However, detrimental effects were restricted to survival during diapause and subsequent development and had no clear effects on butterfly performance. We suggest that overwintering survival is an important driver of vulnerability to climate change. Our study stresses the importance of collating more data on overwintering survival in species with different hibernation strategies to predict the impact of ongoing climate change on biodiversity.  相似文献   

20.
    
Abstract. The reproductive cycles of four Mediterranean demosponges ( Axinella damicornis, Corticium candelabrum, Raspaciona aculeata , and Chondrosia reniformis ) were investigated during 2 consecutive years. Three of the species had annual gametogenic cycles characterized by a single peak of gamete production, but members of C. candelabrum showed continuous oocyte production during the 2 years. The relationship between gametogenic dynamics and seawater temperature varied substantially among species, contrary to the widespread belief that gamete production is associated with seasonal water warming. The annual temperature increase (in June) concurred with oocyte production only in C. reniformis , although maximum temperatures were simultaneous with the production of both oocytes in R. aculeata and sperm in C. reniformis . In contrast, the annual temperature decline in October was associated with both oogenesis in A. damicornis and spermatogenesis in R. aculeata . Spermatogenesis in A. damicornis started after a 5-month period of low-temperature values (December–April in 2004 and November–March in 2005). Likewise, in C. candelabrum , spermatogenesis started after a 3-month period of low-temperature values (November–February), a period concomitant with a slow increase in oocyte production. These findings reveal that sponge species that cooccur and share similar thermal regimes may differ substantially in their timing of gamete production. If we are to predict the future effects of climate change on marine benthic communities, there is an urgent need to improve our knowledge of the species-specific relationship between timing of gametogenesis and temperature, at least for those sponges that are key species in benthic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号