首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
α,β-Unsaturated carbonyl compounds have been implicated in a number of environmentally-related diseases. Often, the presence of α,β-unsaturated carbonyl functionality as part of either an aliphatic or cyclic structure is considered a structural alert for cytotoxicity. We examined the cytotoxicity of methyl vinyl ketone (MVK), an aliphatic, straight-chain α,β-unsaturated carbonyl compound, in murine GT1-7 hypothalamic neurons. In addition to its widespread environmental occurrence, MVK was selected due to its extensive use in the chemical industry. Also, MVK is a close structural analog of hydroxymethylvinyl ketone that, in part, mediates the cytotoxic effects of 1,3-butadiene in vivo. It was found that MVK at low micromolar concentrations induced extensive cell death that retained key features of apoptosis such as chromatin condensation and DNA fragmentation. The MVK-induced apoptosis was associated with depletion of glutathione, disruption of mitochondrial transmembrane potential, and increased generation of reactive oxygen species (ROS). Supplementation of neuronal cells with Trolox offered partial, but significant, protection against the MVK-induced cytotoxicity, presumably due to scavenging of ROS in situ. The suggested sequence of events in the MVK-induced apoptosis in neuronal cells involves the depletion of cellular glutathione followed by an increased generation of ROS and finally the loss of mitochondrial function.  相似文献   

2.
G.E. Sander  T.D. Giles   《Peptides》1982,3(6):1017-1021
Those structural features of enkephalins (ENK) responsible for in vitro organ bath and receptor binding activity have been investigated in detail in the conscious, chronically instrumented dog. Amide analogs of Leu5-ENK display reduced activity, which is restored by D-Ala2 substitutions. N-terminal L-Tyr is required for full opiate activity. Although proven δ-receptor agonists do appear generally more active, distinctions made in vitro between μ and δ binding are not apparent in the complex hemodynamic responses which occur in the intact unanesthetized dog. The amphibian skin peptide dermorphin, which contains D-Ala2, elevates heart rate, systemic arterial pressure, and induces vomiting with near maximal activity at a dose of 1.0 μg/kg; this activity is inhibited by naloxone. This activity, coupled with dermorphin's apparent presence in mammalian tissue, suggests that it may represent another peptide factor in cardiovascular regulation. In the conscious dog, ENK elevate heart rate and systemic arterial pressure; this activity does not appear to be fully explained by in vitro receptor models.  相似文献   

3.
Reactive oxygen species (ROS) interact with components of a living cell. Among them OH is known to cause major oxidative damage to living cells and is proposed to be involved in pathogenesis including carcinogenesis. Proper understanding of consequences of such damage is, therefore, medically relevant. In this report, aqueous solution of plasmid DNA, pMTa4, has been exposed to Fenton oxidant and Haber-Weiss oxidant mediated free radical generating chemical systems, and 60Co γ-rays in vitro either alone or in combination to study their strand breaking abilities. The exposed pMTa4 was analyzed by agarose gel electrophoresis. The results show qualitative differences in the induction of strand breaks on the plasmid pMTa4 molecule by the iron (Fe2+), copper (Cu2+) or γ-rays mediated OH and other ROS.  相似文献   

4.
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid β-peptide [Aβ(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Aβ(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Aβ(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Aβ(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Aβ(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Aβ(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

5.
The mammalian Per1 gene is one of the most important components of circadian clock function of the suprachiasmatic nucleus and peripheral tissues. We examined whether the β2-adrenoceptor agonists, procaterol and fenoterol, induce human Per1 mRNA expression in human bronchial epithelium. The in vitro stimulation of β2-adrenoceptor agonists in BEAS-2B cells led to a remarkable increase in the level of hPer1 mRNA. Moreover, fenoterol or procaterol induced the phosphorylation of CREB in BEAS-2B cells as verified by immunoblot analysis. β2-adrenoceptor agonists induced human Per1 mRNA expression by the signaling pathways of cAMP-CREB in BEAS-2B cells.  相似文献   

6.
In the present report, we investigated the possible importance of β1 integrins in the growth and metastasis of a murine mammary carcinoma, SP1, and a metastatic variant, SP1-3M in vivo. CBA/J female mice bearing SP1 tumor transplants were injected with anti-β1 integrin IgG or control nonimmune IgG (200 μg per mouse; i.p.) every two days. Animals received anti-CD4 antibody (100 μg per mouse) at time zero to suppress immunity against rabbit IgG. Outgrowth of macroscopic metastases from SP1, but not from SP1-3M primary tumors, was markedly inhibited in animals receiving anti-β1 integrin IgG but not nonimmune IgG. To assess the stage(s) in the metastatic cascade affected, we examined the number and diameter of micrometastatic nodules in treated and untreated groups. The diameter of micrometastases was significantly reduced in SP1-tumor-bearing mice treated with anti-β1 integrin IgG compared to control IgG, although the number of nodules per cm2 of lung sections examined remained unchanged. No change in the number or size of micrometastases in SP1-3M tumor-bearing mice was observed. No difference in the binding, or complement-mediated and antibody-dependent cell-mediated cytotoxicity of anti-β1 integrin IgG with SP1 and SP1-3M cells was detected. The results suggest that under these conditions anti-β1 integrin inhibits metastatic tumor growth in lung tissue, but has minimal effect on intravasation, adhesion to target organs and extravasation.  相似文献   

7.
9,10-Phenanthrenequinone (9,10-PQ), a major component in diesel exhaust particles, is suggested to generate reactive oxygen species (ROS) through its redox cycling, leading to cell toxicity. l-Xylulose reductase (XR), a NADPH-dependent enzyme in the uronate pathway, strongly reduces alpha-dicarbonyl compounds and was thought to act as a detoxification enzyme against reactive carbonyl compounds. Here, we have investigated the role of intracellular ROS generation in apoptotic signaling in human acute T-lymphoblastic leukemia MOLT-4 cells treated with 9,10-PQ and the role of XR in the generation of ROS. Treatment with 9,10-PQ elicited not only apoptotic signaling, including mitochondrial membrane dysfunction and activation of caspases and poly(ADP-ribose) polymerase, but also intracellular ROS generation and consequent glutathione depletion. The apoptotic effects of 9,10-PQ were drastically mitigated by pretreatment with intracellular ROS scavengers, such as N-acetyl-l-cysteine, glutathione monoethyl ester, and polyethylene glycol-conjugated catalase, indicating that intracellular ROS generation is responsible for the 9,10-PQ-evoked apoptosis. Surprisingly, the ROS generation and cytotoxicity by 9,10-PQ were augmented in an XR-transformed cell line. XR indeed reduced 9,10-PQ and produced superoxide anion through redox cycling. In addition, the expression levels of XR and its mRNA in the T lymphoma cells were markedly enhanced after the exposure to 9,10-PQ, and the induction was completely abolished by the ROS scavengers. Moreover, the 9,10-PQ-induced apoptosis was partially inhibited by the pretreatment with XR-specific inhibitors. These results suggest that initially produced ROS induce XR, which accelerates the generation of ROS.  相似文献   

8.
Whole cells of Rhodococcus erythropolis DSM 44534 grown on ethanol, (R)- and (S)-1,2-propanediol were used for biotransformation of racemic 1,4-alkanediols into γ-lactones. The cells oxidized 1,4-decanediol (1a) and 1,4-nonanediol (2a) into the corresponding γ-lactones 5-hexyl-dihydro-2(3H)-furanone (γ-decalactone, 1c) and 5-pentyl-dihydro-2(3H)-furanone (γ-nonalactone, 2c), respectively, with an EE(R) of 40–75%. The transient formation of the γ-lactols 5-hexyl-tetrahydro-2-furanol (γ-decalactol, 1b) and 5-pentyl-tetrahydro-2-furanol (γ-nonalactol, 2b) as intermediates was observed by GC–MS. 1,4-Pentanediol (3a) was transformed into 5-methyl-dihydro-2(3H)-furanone (γ-valerolactone, 3c) whereas (R)- and (S)-2-methyl-1,4-butanediol (4a) was converted to the methyl-substituted γ-butyrolactones 4-methyl-dihydro-2(3H)-furanone (4c1) and 3-methyl-dihydro-2(3H)-furanone (4c2) in a ratio of 80:20 with a yield of 55%. Also cis-2-buten-1,4-diol (5a) was transformed resulting in the formation of 2(5H)-furanone (γ-crotonolactone, 5c). At the higher pH values of 8.8 the yield of lactone formed was improved; however, the enatiomeric excesses were slightly higher at the lower pH of 5.2.  相似文献   

9.
Sabinene and γ-terpinene were assayed in vitro acting singly or in mixtures in the gaseous state on the following redwood endophytes: Botrytis cinerea, Cryptosporiopsis abietina, Pestalotiopsis funerea, Phomopsis occulta, Pleuroplaconema sp. and Seiridium juniperi. The hypothesis that these redwood monoterpenes were acting additively or synergistically in inhibiting the growth on leaf endophytes was tested. Dose-response curves were obtained for each endophyte growing under five concentrations of both sabinene and γ-terpinene. Three mixtures of different ratios were assayed keeping constant 0.25 mg of monoterpenes per ml air. Either acting singly or in mixtures sabinene and γ-terpinene were inhibitory to all fungi, but their effect varied according to species. Both compounds had similar effects acting singly on each endophyte with doses from 0.0625 to 0.25 mg ml air−1. With doses of 1.6667 mg ml air−1 of either monoterpene, S. juniperi was mildly inhibited by sabinene and strongly inhibited by γ-terpinene, but other species were strongly and equally inhibited by both compounds. Sabinene: γ-terpinene mixtures of 1:3, 1:1 and 3:1 ratios were equally inhibitory for each species. Results suggest that when these compounds co-occur, they act additively on leaf endophytic fungi.  相似文献   

10.
目的: GM1神经节苷脂贮积症是一种由半乳糖苷酶beta 1(galactosidase beta 1, GLB1)基因突变引起的β-半乳糖苷酶(β-galactosidase,β-gal)活性降低导致的严重的溶酶体贮积病。该病以进行性、致命性神经退行性病变为特征,目前尚无有效的治疗手段,AAV载体介导的基因治疗被认为是最有希望的治疗方法。通过基因定点突变获得具有较高β-gal活性的GLB1突变体,以期用于后续AAV介导的基因治疗。方法: 对人类和其他6种脊椎动物GLB1基因进行多序列比对分析,筛选出部分氨基酸位点进行定点突变,采用携带突变位点的重组质粒和AAV9载体转染或感染HEK-293细胞,比较突变体与未突变体的活性差异。对GM1模型鼠注射携带coGLB1-R299L的rAAV9病毒,探究该突变体的体内活性表达。结果: 从15个突变体中筛选出coGLB1-R299L突变体,经质粒转染导入细胞后,其β-gal活性比具有野生型氨基酸序列的coGLB1增加了30%~40%。AAV体外感染实验中,rAAV9-coGLB1-R299L组的β-gal活性较未感染的细胞对照组提升了约2.2倍。体内结果显示,rAAV9-coGLB1-R299L在模型鼠体内广泛表达,心脏、肝脏、脾脏、肺、脑组织中β-gal活性显著提升。结论: 获得了具有更高β-gal活性的突变体coGLB1-R299L,初步探究了rAAV9-coGLB1-R299L的体外表达效果和模型鼠体内β-半乳糖苷酶的表达与分布,为该突变体应用于AAV介导的GM1神经节苷脂病治疗奠定基础。  相似文献   

11.
-Tocopherol is a lipophilic vitamin that exhibits an antioxidative activity. The purpose of this study was to clarify the roles of -tocopherol in the regulation of intracellular glutathione (GSH) levels in HaCaT keratinocytes. When HaCaT keratinocytes were cultivated with -tocopherol for 24 h, the intracellular GSH was increased at every concentration of -tocopherol tested. Furthermore, the HaCaT keratinocytes cultured with -tocopherol at 50 μM for 24 h exhibited resistance against H 2 O 2 . However, a short exposure of HaCaT keratinocytes to -tocopherol for 1 h did not influence either the GSH level or the resistance to H 2 O 2 . These findings suggest that GSH, which is inductively synthesized by -tocopherol, effectively reduces exogenous oxidative stress. To evaluate the effect of -tocopherol on the GSH level, BSO, which is a typical inhibitor of γ-glutamylcysteine synthetase ( γ-GCS), was used. When BSO was added to HaCaT keratinocytes, no action of -tocopherol on the GSH level was observed. On the other hand, -tocopherol resulted in the up-regulation of γ-GCS-HS (heavy subunit) mRNA. In addition, water soluble -tocopherol derivatives ( -tocopherol phosphate and trolox) caused no changes in GSH level. From these results, it was concluded that -tocopherol increases the intracellular GSH level of HaCaT keratinocytes through the up-regulation of γ-GCS-HS mRNA.  相似文献   

12.
The mechanisms of the medium-mediated bystander response induced by γ-rays in non-irradiated TK6 cells were investigated. Cell cultures were irradiated and the culture medium discarded immediately after irradiation and replaced with a fresh one. In cells incubated with conditioned medium from irradiated cells (CM), a significant decrease in cell viability and cloning efficiency was observed, together with a significant increase in apoptosis, also in directly irradiated cells. To examine whether bystander apoptosis involved the extrinsic pathway, an inhibitor of caspase-8 was added to CM cultures, which significantly decreased apoptosis to control levels. The addition to CM of ROS scavengers, Cu–Zn superoxide dismutase and N-acetylcysteine did not affect the induction of apoptosis. To assess whether CM treatment activates a DNA damage response, also the formation of γ-H2AX foci, as markers of double-strand breaks and their colocalisation with 53-binding protein 1 (53BP1) and the protein mutated in the Nijmegen breakage syndrome 1 (NBS1) was analysed. In cultures treated for 2 h with CM, 9–11% of cells showed γ-H2AX foci, which partially or totally lacked colocalisation with 53BP1 and NBS1 foci. About 85% of irradiated cells were positive for γ-H2AX foci, which colocalised with 53BP1 and NBS1 proteins. At 24 h from irradiation, very few irradiated cells retained foci, fitting DNA repair kinetics. The number of foci-positive bystander cells also decreased to background values 24 h after CM incubation. Our results suggest that irradiated TK6 cells release into the medium some soluble factors, not ROS, which are responsible for the cytotoxic effects induced in bystander cells. In our experimental system, the role of ROS appeared to be of minor importance in inducing cell mortality, but probably critical in activating the DNA damage response in the responsive fraction of bystander cells.  相似文献   

13.
β-Amylase hydrolyzes the -1,4-glycosidic linkages of starch resulting in the release of maltose. This reaction is of industrial importance for maltose production and for the preparation process of fermented foods and alcoholic beverages. A demand for an acceleration of the rate of enzymatic cleavage of the starch macro-molecule is a prerequisite for large-scale and highly efficient production. Increasing the temperature up to the optimum of approximately 60 °C can significantly speed up the reaction. However, at higher temperatures, the effect on protein denaturation becomes dominant, and the conversion rate decreases. The primary objective of this study was to generate transgenic plants of the “Kennebec” potato variety for production of thermostable β-amylase using Agrobacterium-mediated transformation. Four chimeric genes encoding the β-amylase with or without signal peptide sequences for targeting expression in cytoplasm, amyloplasts, or vacuoles were constructed and driven by high tuber expression promoter from Sucrose synthetase gene Sus4. Forty-two transgenic lines were selected for this study. Transgenic lines with various β-amylase constructs were verified for the existence and expression of the transgenes by PCR approaches. The expression level of the introduced β-amylase protein was estimated by immunoblot analyses using polyclonal antibodies. Recombinant β-amylase was successfully expressed in Escherichia coli B21 (DE3), and temperature ranges of these inducible recombinant proteins were found to be between 40 and 90 °C. This enzymatic complex produced in the in vitro cultured microtubers and field-grown tubers from transgenic potatoes were proved to be stable and active at 60 °C. The relative activities of β-amylase in tubers of field-grown potatoes were compared, and the maximum increase was found with transgenic line #6A of the pSUS4-AMY construct which has an 11-fold greater increase than the untransformed “Kennebec”. Variations of the chemical compositions were found in the selected transgenic lines. Results of this study suggest the feasibility of utilizing thermostable β-amylase in transgenic potatoes for the starch-processing industries.  相似文献   

14.
Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.  相似文献   

15.
A microbial process for the production of optically-active γ-decalactone from the ricinoleic acid present as triglycerides in castor oil has been developed, γ-decalactone (γDL) is a component of some fruit flavours, being an important organoleptic component of peach flavours. Screening showed two red yeast microorganisms, Rhodotorula glutinis and Sporobolomyces odortts to be especially suitable for this biotransformation. The process involves lipase-mediated hydrolysis of the castor oil to give free ricinoleic acid, uptake of the acid by the cells and aerobic fermentation to achieve abbreviated β-oxidation of the ricinoleic acid (12-hydroxyoleic acid) into 4-hydroxydecanoic acid (4HDA), lactonisation of the acid into γ-DL, followed by solvent extraction and distillation. γ-DL broth concentrations of 0.5-1.2g · 1-t were obtained after 3-5 days from fermentation media containing 10 g · 1-1 castor oil, representing an 8.3-20.0% theoretical yield. Intermediates detected were consistent with the operation of the β-oxidation pathway. Appreciable amounts of novel metabolites identified as cis and trans isomers of a tetrahydrofuran (C10) were also produced. Their formation from 4HDA appeared to be non-enzymic and was favoured by anaerobic conditions. Yields of γ-DL were inversely proportional to the concentration of castor oil present in the medium, indicating that substrate inhibition takes place. The highest yields of γ-DL were obtained when castor oil was present from the beginning of the fermentation, rather than when added once the fermentation had become established, demonstrating that the β-oxidation pathway and/or transport system require continual induction. Significant amounts of γ-DL were not produced from other fatty acids, including ricinelaidic acid, the trans isomer of ricinoleic acid. γ-DL formation was dramatically inhibited by antibiotic inhibitors of oxidative phosphorylation, indicating the importance of intact β-oxidation pathways, whereas inhibitors of protein synthesis and cell-wall synthesis had much less marked effects. Selective extraction of 4HDA from the fermentation broths, and of γDL from broth lactonised by heating at low pH, could be achieved by adsorption to Amberlite XAD-1 and XAD-7 resins respectively. Some product could be recovered from the exit gases of the fermenter by passing through propylene glycol traps. This pathway is unusual in that it is a rare example of the truncated β-oxidation of a fatty acid by microorganisms. This effect probably occurs because of partial inhibition of one or more enzymes of the β-oxidation pathway by the C10 hydroxylated fatty acid intermediate(s) allowing intracellular accumulation of the 4HDA, followed by leakage out of the cell; although further metabolism of this C10 intermediate does take place slowly.  相似文献   

16.
Park MT  Song MJ  Lee H  Oh ET  Choi BH  Jeong SY  Choi EK  Park HJ 《PloS one》2011,6(10):e25976

Background

β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap.

Methodology/Principal Findings

β-lap enhanced the effect of IR to cause clonogenic cells in NQO1+-MDA-MB-231 cells but not in NQO1-MDA-MB-231 cells. β-lap caused apoptosis only in NQO1+ cells and not in NQO1 cells and it markedly increased IR-induced apoptosis only in NQO1+ cells. Combined treatment of NQO1+ cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis.

Conclusions/Significance

β-lap causes NQO1-dependent radiosensitization of cancer cells. When NQO1+ cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis.  相似文献   

17.
Retinoic acid exerts antiproliferative and differentiative effects in normal and transformed in vitro hepatocytes. In order to verify whether these effects are related to a modulation of adhesion molecules, we used Western blot analysis and immunofluorescence microscopy to investigate the E-cadherin/β-catenin complex, the main system of adherens junctions, and the occludin/ZO-1 complex present in the tight junctions in HepG2 cells cultured in the presence or absence of retinoic acid. Results showed that retinoic acid treatment increases the amount of β-catenin bound to E-cadherin by decreasing its tyrosine-phosphorylation level. Similar results were obtained with the tight junction system, in which the amount of occludin/ZO-1 complex is increased by a similar mechanism that reduced the level of ZO-1 phosphorylation on tyrosine. Immunofluorescence images also confirm these results, showing the localization on the cell surface of both adhesion complexes. Their insertion into the plasma membrane could be suggestive of an optimal reassembly and function of adherens and tight junctions in hepatoma cells, indicating that retinoic acid, besides inhibiting cell proliferation, improves cell-cell adhesion, sustaining or inducing the expression of a more differentiated phenotype.  相似文献   

18.
Segura D  Vargas E  Espín G 《Gene》2000,260(1-2):113-120
Azotobacter vinelandii is proposed to contain a single β-ketothiolase activity participating in the formation of acetoacetyl-CoA, a precursor for poly-β-hydroxybutyrate (PHB) synthesis, and in β-oxidation (Manchak, J., Page, W.J., 1994. Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140, 953–963). We designed a degenerate oligonucleotide from a highly conserved region among bacterial β-ketothiolases and used it to identify bktA, a gene with a deduced protein product with a high similarity to β-ketothiolases. Immediately downstream of bktA, we identified a gene called hbdH, which encodes a protein exhibiting similarity to β-hydroxyacyl-CoA and β-hydroxybutyryl-CoA dehydrogenases. Two regions with homology to bktA were also observed. One of these was cloned and allowed the identification of the phbA gene, encoding a second β-ketothiolase. Strains EV132, EV133, and GM1 carrying bktA, hbdH and phbA mutations, respectively, as well as strain EG1 carrying both bktA and phbA mutations, were constructed. The hbdH mutation had no effect on β-hydroxybutyryl-CoA dehydrogenase activity or on fatty acid assimilation. The bktA mutation had no effect on β-ketothiolase activity, PHB synthesis or fatty acid assimilation, whereas the phbA mutation significantly reduced β-ketothiolase activity and PHB accumulation, showing that this is the β-ketothiolase involved in PHB biosynthesis. Strain EG1 was found to grow under β-oxidation conditions and to possess β-ketothiolase activity. Taken together, these results demonstrate the presence of three genes coding for β-ketothiolases in A. vinelandii.  相似文献   

19.
20.
Subsites −3 and −7 in the active site of β-cyclodextrin glucanotransferase (β-CGTase) from alkalophilic Bacillus firmus var. alkalophilus were modified through site-directed mutagenesis to obtain novel mutant CGTases. Four mutant CGTases, H59Q, Y96M, 90-PPI-92, and Δ(154–160) were constructed and produced using a recombinant E. coli with a secretive expression system extracellularly. The secreted mutant β-CGTases were purified by one-step affinity adsorption chromatography using a β-cyclodextrin (CD) polymer as an adsorbent to nearly homogeneous purity. The catalytic activities were modified significantly compared to the wild-type. In particular, the Y96M and Δ(154–160) mutants increased cyclization activity around 1.5 times without any significant reduction of coupling and hydrolyzing activities. Meanwhile, the Y96M and Δ(154–160) mutants exhibited a much higher conversion yield into CDs from 28.6 to 39% without any recognizable change in the CD ratio. The conversion yield into linear maltooligosaccharides was also significantly reduced. The catalytic functions of subsites −3 and −7 in the active site of β-CGTase would appear to be related to the overall productivity of CDs rather than the product specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号