首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state ATPase activities of cardiac myosin from thyroxine-treated rabbit hearts have been determined before and after removal of the 18-kDa light-chain subunit (LC2) of myosin. LC2 was selectively removed from myosin by treatment with a myofibrillar protease according to the method of Kuo and Bhan (Biochem. Biophys. Res. Commun. 92, 570-576 (1980) ). The effects of removal of LC2 on the enzymatic properties of thyrotoxic myosin were compared with the results obtained for cardiac myosin from normal rabbits by parallel studies. It has been found that removal of LC2 does not affect the Ca2+- and K+ (EDTA)-ATPase activities of these myosins. The actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient thyrotoxic myosin were 0.18 +/- 0.03 and 0.36 +/- 0.03 mumol Pi/mg per min, respectively, whereas the actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient normal myosin were 0.12 +/- 0.02 and 0.18 +/- 0.03 mumol Pi/mg per min, respectively. Thus, removal of LC2 increases the actin-activated myosin Mg2+-ATPase activity of thyrotoxic myosin by 100%, and the same activity is increased about 50% for normal myosin, indicating that the degree of potentiation of actin-activated myosin Mg2+-ATPase activity as a result of LC2 removal is 2-fold greater in thyrotoxic myosin than that obtained for normal myosin. These results suggest that LC2 does not influence the increased actomyosin ATPase activity of thyrotoxic myosin and that potentiation of actomyosin ATPase following LC2 removal may depend on the variations of the heavy-chain domain where LC2 interacts.  相似文献   

2.
Myosin from human erythrocytes   总被引:11,自引:0,他引:11  
We have purified myosin from human erythrocytes using methods similar to that for other cytoplasmic myosins with a yield of about 500 micrograms/100 ml of packed cells. It consists of a 200-kDa heavy chain and light chains of 26- and 19.5 kDa and therefore differs from the isozyme in platelets which has light chains of 20- and 15 kDa. At low ionic strength, the myosin forms short bipolar filaments like those of platelet myosin. Eight of eight monoclonal antibodies to platelet myosin also bind to erythrocyte myosin. Like most myosins, it has a high ATPase activity in the presence of Ca2+ or EDTA, but is inhibited by Mg2+. Myosin light-chain kinase transfers 1 phosphate from ATP to the 20-kDa light chain, and this stimulates the actin-activated ATPase. Thus, myosin may play a role in shape changes in the erythrocytes.  相似文献   

3.
Myosin isozyme pattern in adult rat cardiac ventricular muscle cells in long-term culture was investigated. The myosin isozymes profile of cultured cardiac myocytes underwent a change in a serum-containing medium from two weeks onward, showing an embryonic rat ventricular myosin isozymes pattern that contained predominant isozyme V3. When adult cardiac myocytes were grown in a serum-containing medium supplemented with T4, these cells contained a predominant V1 band whose electrophoretic mobility and Ca2+-ATPase activity were comparable to those of the adult rat ventricle in vivo. This study has demonstrated that the adult cardiac ventricular muscle cells in long-term culture contain a predominant myosin isozyme V3 unlike their counterparts in vivo. Supplemented T4 modulated the embryonic type isozyme V3 to the adult type V1.  相似文献   

4.
Myosin light chain kinase was partially purified from bovine adrenal medulla. A polypeptide of Mr 165,000 dalton was identified as kinase by using anti-gizzard myosin light chain kinase IgG on immunoreplica. Phosphorylation of medullary myosin was Ca2+- and calmodulin-dependent. The phosphorylated myosin was showed to enhance the actin-activated Mg2+-ATPase activity. In contrast, the myosin ATPase activity was dramatically decreased by dephosphorylation of myosin.  相似文献   

5.
A reduction (by 16-24%) in the amount of myosin regulatory light chains (LC2) in all heart sections of patients with dilated cardiomyopathy was found. The appearance of atrial essential light chains in ventricular myosin (up to 23%) not typical for this heart section in norm was also revealed. The decrease in LC2 content leads to a considerable inhibition of actin-activated ATPase activity and a loss of Ca2+ sensitivity of reconstructed filaments of myosin isolated from atria and ventricles of patients with dilated cardiomyopathy. The hybridization of myosin molecules from heavy chains of pathological human left ventricular myosin and light chains of pig left ventricular myosin leads to an increase in actin-activated ATPase activity of myosin and its Ca2+ sensitivity to the control level. The data suggest strongly the contribution of LC2-deficit to the distortion of functional properties of myosin in dilated cardiomyopathy. In contrast, the appearance of atrial LC1 in ventricle in dilated cardiomyopathy is a factor improving these properties.  相似文献   

6.
Monoclonal antibodies against gizzard smooth muscle myosin were generated and characterized. One of these antibodies, designated MM-2, recognized the 17-kDa light chain and modulated the ATPase activities and hydrodynamic properties of smooth muscle myosin. Rotary shadowing electron microscopy showed that MM-2 binds 51 (+/- 25) A from the head-rod junction. The depression of Ca2+- and Mg2+-ATPase activities of myosin and Ca2+-ATPase activity of heavy meromyosin at low KCl concentration were abolished by MM-2. Viscosity measurement indicated that MM-2 inhibits the transition of 6 S myosin to 10 S myosin. While the rate of the production of subfragment-1 by papain proteolysis of 6 S myosin was inhibited by MM-2, the rate of proteolysis of the heavy chain of 10 S myosin was enhanced by MM-2 and reached the same rate as that of 6 S myosin plus MM-2. These results suggest that MM-2 inhibits the formation of 10 S myosin by binding to the 17-kDa light chain which is localized at the head-neck region of the myosin molecule. MM-2 increased the Vmax of actin-activated Mg2+-ATPase activities of both dephosphorylated myosin and dephosphorylated heavy meromyosin about 10- and 20-fold, respectively. MM-2 also activated the actin-activated Mg2+-ATPase activity of phosphorylated myosin at a low MgCl2 concentration and thus abolished the Mg2+-dependence of acto phosphorylated myosin ATPase activity. These results suggest that MM-2 inhibits the formation of 10 S myosin, and this results in the activation of actin-activated Mg2+-ATPase activity even in the absence of phosphorylation.  相似文献   

7.
Summary Subfragment-1 of rabbit atrial and thyrotoxic ventricular myosin (V1 isomyosin) has been prepared and purified by DEAF-cellulose column chromatography. Pyrophosphate-polyacrylamide gel electrophoretic patterns and column chromatographic profile of the atrial subfragment differ from those of thyrotoxic ventricular myosin subfragment-1. On the other hand, Ca2+, Mg2+ and actin-activated ATPase activities of these subfragments are identical. Comparison of the peptide mapping by limited proteolysis in the presence of sodium dodecyl sulfate of the heavy and the light subunits of these subfragments reveals that the patterns for the heavy chain peptides of these subfragments are substantially similar but their light chain peptide patterns differ. The results suggest that the enzymatic and structural similarities that have been recognized between these isoenzymes using intact myosin hold true for the myosin subfragment-1.The differences between these subfragments are due to the differences in the light chains associated with them.Abbreviations EDTA Ethylene Diamine Tetra-acetic Acid - SDS Sodium Dodecyl Sulfate - S1 myosin subfragment-1 - HC Heavy Chain - LC Light Chain  相似文献   

8.
The crude actomyosin precipitate from sea urchin (Arbacia punctulata) egg extracts contains Ca2+-sensitive myosin light chain kinase activity. Activity can be further increased by exogenous calmodulin (CaM). Egg myosin light chain kinase activity is purified from total egg extract by fractionating on three different chromatographic columns: DEAE ion exchange, gel filtration on Sephacryl-300, and Affi-Gel-CaM affinity. The purified egg kinase depends totally on Ca2+ and CaM for activity. Unphosphorylated egg myosin has very little actin-activated ATPase. After phosphorylation of the phosphorylable light chain by either egg kinase or gizzard myosin light chain kinase, the actin-activated ATPase of egg myosin is enhanced several fold. However, the egg kinase bears some unique characteristics which are very different from conventional myosin light chain kinases of differentiated tissues. The purified egg kinase has a native molecular mass of 405 kDa, while on sodium dodecyl sulfate-polyacrylamide electrophoresis it shows a single subunit of 56 kDa. The affinity of egg kinase for CaM (Ka = 0.4 microM) is relatively weaker than that of the gizzard myosin light chain kinase. The egg kinase autophosphorylates in the presence of Ca2+ and CaM and has a rather broad substrate specificity. The possible relationship between this egg Ca2+-CaM-dependent kinase and the Ca2+-CaM-dependent kinases from brain and liver is discussed.  相似文献   

9.
The degradation of rat cardiac myofibrils and their constituent proteins with a myosin-cleaving protease was studied. Electrophoretograms of the digestion products of myofibrils showed that myosin,M-protein, C-protein, and troponin were degraded, but actin and tropomyosin were not. Degradation of these constituents resulted in losses of the Mg2+-ATPase activity and its Ca2+-sensitivity of myofibrils. Incubation of myofibrils with the protease induced the release of alpha-actinin without degradation. Susceptibilities of myosin, actin, troponin, and alpha-actinin purified from rat and pig hearts to the protease were essentially identical to those of the assembled forms in myofibrils. Although the purified tropomyosin was readily degraded into five fragments with the protease, the tropomyosin assembled in myofibrils and actin-tropomyosin complex were insusceptible to the protease. Digestion of myosin in the filamentous state with the protease resulted in the disappearance of myosin heavy chain and light chain 2, producing two fragments having molecular weights of 130,000 and 94,000 which originated from the degradation of heavy chain. The Ca2+- and EDTA-ATPase activities of the degradation products remained unchanged during incubation for 22 h. The actin-activated ATPase activity of myosin was reduced by 30% during incubation for 6 h, and recovered to the original level on adding actin to give a ratio of actin to myosin of 2:1. The pH optima for degradation of myosin in the soluble and filamentous states were 8.5 and 7.0, respectively. The results indicate that cardiac myosin in the filamentous state was more readily degraded with the protease than the myosin in the soluble state.  相似文献   

10.
The biological functions of the myosin light chain 1 (LC1) have not been clearly elucidated yet. In this work we cloned and expressed N- and C- terminal fragments of human ventricular LC1 (HVLC1) containing amino acid residues 1-98 and 99-195 and two parts, NN and NC of N fragment in GST-fusion forms, respectively. Using GST pull-down assay, the direct binding experiments of LC1 with rat cardiac G-actin, F-actin and thin filaments, as well as rat cardiac myosin heavy chain (RCMHC) have been performed. Furthermore, the recombinant complexes of rat myosin S1 with N- and C-fragments, as well as the whole molecular of HVLC1 were generated. The results suggested that both binding sites of HVLC1 for actin and myosin heavy chain are positioned in its N-terminal fragment, which may contain several actin-binding sites in tandem. The polymerization of G-actin, the tropomyosin and troponin molecules located in the thin filaments do not hinder the binding of N-terminal fragment of HVLC1 with actin and thin filaments in vitro. The recombinant complex of rat cardiac myosin S1 (RCMS1) with N fragment of HVLC1 greatly decreased actin-activated Mg(2+)-ATPase activity for lack of C fragment. We conclude that the N-fragment is the binding domain of human ventricular LC1, whereas the C-fragment serves as a functional domain, which may be more involved in the modulation of the actin-activated ATPase activity of myosin.  相似文献   

11.
Ca2+ binding to pig cardiac myosin, subfragment-1 (S-1), and g2 light chain were investigated by the equilibrium dialysis method. Two different S-1s, one of which can bind Ca2+ and another which cannot, were prepared. In order to calculate the free Ca2+ concentrations adequately, the amounts of Ca2+ included in various chemicals and proteins were measured by atomic absorption spectroscopy. Ca2+ contamination was greatest in KCl among the chemicals tested. In addition, the Ca2+ strongly bound to myosin and S-1 was released in the presence of Mg2+. When Mg2+ was not added, the Ca2+-binding constant of myosin was 4 x 10(5) M-1 and the maximum binding number was 1.8 mol per mol of myosin. Cooperativity between the 2 Ca2+ bindings could not be demonstrated. Mg2+ strongly inhibited the Ca2+ binding: at a free Ca2+ concentration of 1 x 10(-5) M, 1.3 mol Ca2+ was bound to myosin in the absence of Mg2+, but 0.6 and 0.2 mol were bound in the presence of 0.3 and 4.5 mM Mg2+, respectively. The Ca2+-binding constant of S-1, which contained a 15,000 dalton component, was 8.6 x 10(5) M-1, and the maximum binding number was 0.7 mol per mol of S-1. The 15,000 dalton component could be exchanged with extraneous g2. S-1 which lacked the 15,000 component could not bind Ca2+ at free Ca2+ concentrations less than 0.1 mM. The Ca2+ binding to free g2 light chain was about 100 times weaker than the binding to myosin, as indicated previously for skeletal myosin (Okamoto, Y. & Yagi, K. (1976) J. Biochem. 80, 111--120). The Ca2+-binding constant was obtained as 4.1 x 10(3) M-1 in the absence of added Mg2+. Phosphorylation of g2 light chain did not affect the Ca2+ binding to the free g2 light chain or to myosin. Ca2+ binding to cardiac native tropomyosin was also measured.  相似文献   

12.
Light chain exchange in 4.7 M NH4Cl was used to hybridize the essential light chain of cardiac myosin with the heavy chain of fast muscle myosin subfragment 1, S-1. The actin-activated ATPase properties of this hybrid were compared to those of the two fast S-1 isoenzymes, S-1(A1), fast muscle subfragment 1 which contains only the alkali-1 light chain, and S-1(A2), fast muscle myosin subfragment 1 which contains only the alkali-2 light chain. This hybrid S-1 behaved like S-1(A1)., At low ionic strength in the presence of actin, this hybrid had a maximal rate of ATP hydrolysis about the same as that of S-1(A1) and about one-half that of S-1(A2), while at higher ionic strengths the actin-activated ATPases of these three S-2 species were all similar. Light chain exchange in NH4Cl was also used to hybridize the essential light chains of fast muscle myosin with the heavy chains of cardiac myosin and to hybridize the essential light chains of cardiac myosin with the heavy chains of fast muscle myosin. In 60 and 100 mM KCl, the actin-activated ATPases of these two hybrid myosins were very different from those of the control myosins with the same essential light chains but were very similar to those of the control myosins with the same heavy chains, differing at most by one-third.  相似文献   

13.
Myosin and actin were purified from ascidian smooth muscle. Ascidian myosin contained two classes of light chains and the pH dependence of Ca2+-activated ATPase and the KCl dependence of actin-activated ATPase of ascidian myosin differed from those of vertebrate skeletal myosin. Troponin-tropomyosin complex from ascidian increased the ATPase activity of ascidian reconstituted actomyosin in a Ca2+-dependent manner. Ascidian myosin provided the reconstituted actomyosin with the responsiveness to calcium ions. Two actin isoforms were present in ascidian, which were distinguished by isoelectric points.  相似文献   

14.
Isoelectric focusing of purified vascular smooth muscle myosin revealed two variants of the 17,000-dalton light chain subunits. The isoelectric points of the light chain variants were determined to be 4.13 (LC17a) and 4.19 (LC17b). Tryptic peptide maps of the two species of light chain generated by reverse-phase high performance liquid chromatography disclosed small but obvious differences in peptide composition while amino acid analyses of the variants were quite similar. Two-dimensional electrophoresis of extracts from various mammalian smooth muscles revealed tissue-specific differences in the relative content of LC17a and LC17b. Vascular (aorta, carotid, and pulmonary artery) muscles and tracheal smooth muscle contained both light chain variants while smooth muscle of the gastrointestinal tract (stomach and jejunum) contained LC17a only. The actin-activated Mg2+-ATPase activities of both phosphorylated and nonphosphorylated stomach (LC17b = 0) and aortic (LC17b = 40%) myosins were compared. In the presence of saturating tropomyosin, a 2-fold difference in Vmax was measured: phosphorylated, aortic, 0.119 +/- 0.009 versus stomach, 0.239 +/- 0.012 mumol of PO4 liberated/min/mg of myosin; nonphosphorylated, aortic, 0.065 +/- 0.004 versus stomach, 0.123 +/- 0.004 mumol of PO4 liberated/min/mg of myosin. In addition, the Vmax of myosin subfragment-1 ATPase from bovine aortic, pulmonary artery, and stomach myosins (LC17b contents, 40, 20, and 0%, respectively) was found to decrease in direct proportion to the LC17b content. Our results suggest that isoforms of the 17,000-dalton light chain subunits of mammalian smooth muscle myosin could play an important role in modulating actomyosin ATPase activity.  相似文献   

15.
Calcium regulation of porcine aortic myosin   总被引:1,自引:0,他引:1  
Calcium regulation of actin-activated porcine aortic myosin MgATPase was studied. The MgATPase of the purified actomyosin was stimulated about 10-fold by 0.1 mM Ca2+. The 20,000 molecular weight light chain subunit (LC20) of myosin was phosphorylated by an endogenous kinase that required Ca2+. Half-maximal activation of both kinase and ATPase occurred at about 0.9 microM Ca2+. Phosphorylated and unphosphorylated myosins, free of actin, kinase, and phosphatase, were purified by gel filtration. The MgATPase of phosphorylated myosin was activated by rabbit skeletal muscle actin; unphosphorylated myosin was actin activated to a much lesser extent. Actin activation was maximal in the presence of Ca2+. Regulation of the aortic myosin MgATPase seems to involve both direct interaction of calcium with phosphorylated myosin and calcium activation of the myosin kinase. The MgATPase of trypsin-treated actomyosin did not require Ca2+ for full activity. The trypsin-treated actomyosin was devoid of LC20. When purified unphosphorylated aortic myosin was treated with trypsin, the LC20, was cleaved and the MgATPase, which was not appreciably actin activated before exposure to protease, was increased and was activated by skeletal muscle actin. After incubation of this light chain-depleted myosin with light chain from rabbit skeletal muscle myosin, the actin activation but not the increased activity, was abolished. Unphosphorylated LC20 seems to inhibit actin activation in this smooth muscle.  相似文献   

16.
Studies were conducted to examine the effects of chronic adrenalectomy (Adx) and adrenalectomy plus glucocorticoid replacement therapy on rat cardiac contractile protein ATPase activities. The Ca2+-dependent Mg-ATPase activity of myofibrils isolated from rat ventricles 3 weeks postadrenalectomy (Adx) was significantly decreased at all pCa2+ concentrations (P less than 0.01), compared to sham-operated (SO) rats. Similarly, Ca2+-, K+-EDTA, and actin-activated myosin ATPase activities of Adx rat hearts were markedly decreased below that of SO rats (P less than 0.01). Dexamethasone administration to Adx rats prevented the decrease of Ca2+- and K+-ATPase activities of myosin, but not of myofibrillar Ca2+-dependent Mg-ATPase or actin-activated myosin Mg-ATPase activities. These studies suggest that glucocorticoid insufficiency induced by adrenalectomy results in altered myocardial contractile protein ATPase activity which may underlie impaired cardiac performance.  相似文献   

17.
Myosin was isolated from amoebae of Physarum polycephalum and compared with myosin from plasmodia, another motile stage in the Physarum life cycle. Amoebal myosin contained heavy chains (Mr approximately 220,000), phosphorylatable light chains (Mr 18,000), and Ca2+-binding light chains (Mr 14,000) and possessed a two-headed long-tailed shape in electron micrographs after rotary shadow casting. In the presence of high salt concentrations, myosin ATPase activity increased in the following order: Mg-ATPase activity less than K-EDTA-ATPase activity less than Ca-ATPase activity. In the presence of low salt concentrations, Mg-ATPase activity was activated approximately 9-fold by skeletal muscle actin. This actin-activated ATPase activity was inhibited by micromolar levels of Ca2+. Amoebal myosin was indistinguishable from plasmodial myosin in ATPase activities and molecular shape. However, the heavy chain and phosphorylatable light chains of amoebal myosin could be distinguished from those of plasmodial myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, and immunological studies, suggesting that these are different gene products. Ca2+-binding light chains of amoebal and plasmodial myosins were found to be identical using similar criteria, supporting our hypothesis that the Ca2+-binding light chain plays a key role in the inhibition of actin-activated ATPase activity in Physarum myosins by micromolar levels of Ca2+.  相似文献   

18.
Using purified recombinant human ventricular myosin light chain 1 (HVMLC 1) as the antigen,three monoclonal antibodies,designated C8,C9 and B 12,were prepared.Immunoblot experiments demonstratedthat all monoclonal antibodies could react with the ventricular myosin light chain 1 isolated from differentsources,such as human,rat or pig.It was also demonstrated that C8 was directed against the NN part of theN-fragment (amino acid 1-40) of HVMLC1,and both C9 and B12 against the C-fragment (amino acid 99-195).The affinity constants of C8,C9 and B12 were 3.20×10~8,8.60×10~7 and 1.77×10~8 M~(-1),respectively,determined by non-competitive ELISA.The isotype of B12 was determined as lgG2a,whereas the isotype ofboth C8 and C9 were IgG1.In the presence of C9 or B12,the actin-activated Mg~(2 )ATPase activity of myosinwas greatly inhibited,but there was almost no effect on the Mg~(2 )ATPase activity for C8.B12 and C9 alsoinhibited the superprecipitation of porcine cardiac native actomyosin (myosin B) and reconstituted actomyosin,but C8 did not.The results indicate that all three monoclonal antibodies could bind the intact myosin molecule,but B12 and C9 might more easily react with epitopes located in the C-fragment of HVMLC1.The inhibitoryeffects of B 12 and C9 on ATPase activity and superprecipitation assays show that light chain 1,particularlythe C-fragment domain,is involved in the modulation of the actin-activated Mg~(2 )ATPase activity of myosinand,as a consequence,plays an essential role in the interaction of actin and myosin.  相似文献   

19.
The actin-activated Mg(2+)-ATPase activity of Acanthamoeba myosins I depends on phosphorylation of their single heavy chains by myosin I heavy chain kinase. Kinase activity is enhanced > 50-fold by autophosphorylation at multiple sites. The rate of kinase autophosphorylation is increased approximately 20-fold by acidic phospholipids independent of the presence of Ca2+ and diglycerides. We show in this paper that Ca(2+)-calmodulin inhibits phospholipid-stimulated autophosphorylation of myosin I heavy chain kinase and hence also inhibits the catalytic activity of unphosphorylated kinase in the presence of phospholipid. Ca(2+)-calmodulin does not inhibit kinase activity in the absence of phospholipid. Micromolar Ca(2+)-calmodulin also inhibits binding of myosin I heavy chain kinase to phospholipid vesicles and purified plasma membranes. Proteolytic removal of a 7-kDa NH2-terminal segment from the 97-kDa kinase prevents binding of both calmodulin and phospholipid; therefore, we propose that they bind to the same or overlapping sites. These data provide a mechanism by which Ca2+ could inhibit the actin-activated Mg(2+)-ATPase activity of the myosin I isozymes in vivo and thus regulate myosin I-dependent motile activities.  相似文献   

20.
Trinitrophenylation of smooth muscle myosin   总被引:1,自引:0,他引:1  
The reaction of trinitrobenzenesulfonate with gizzard myosin was studied. The initial phase of the reaction involved two residues and at this level of modification the following was observed: the Mg2+-ATPase of myosin, the actin-activated ATPase of phosphorylated myosin and the phosphorylation kinetics of myosin were not affected. However, trinitrophenylation did induce an activation of the actin-activated ATPase of dephosphorylated myosin and in this respect mimicked the effect of light chain phosphorylation. The Mg2+-dependence of actin-activated ATPase also is altered on trinitrophenylation. These alterations of enzymatic properties could be at least partly explained by the finding that trinitrophenylation favored the 6S conformation of myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号