首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular chaperone heat shock protein 90 (Hsp90) is involved in multiple cellular processes including protein maturation, complex assembly and disassembly, and intracellular transport. We have recently shown that a disruption of Hsp90 activity in cultured Drosophila melanogaster cells suppresses Flock House virus (FHV) replication and the accumulation of protein A, the FHV RNA-dependent RNA polymerase. In the present study, we investigated whether the defect in FHV RNA polymerase accumulation induced by Hsp90 suppression was secondary to an effect on protein A synthesis, degradation, or intracellular membrane association. Treatment with the Hsp90-specific inhibitor geldanamycin selectively reduced FHV RNA polymerase synthesis by 80% in Drosophila S2 cells stably transfected with an inducible protein A expression plasmid. The suppressive effect of geldanamycin on protein A synthesis was not attenuated by proteasome inhibition, nor was it sensitive to changes in either the mRNA untranslated regions or protein A intracellular membrane localization. Furthermore, geldanamycin did not promote premature protein A degradation, nor did it alter the extremely rapid kinetics of protein A membrane association. These results identify a novel role for Hsp90 in facilitating viral RNA polymerase synthesis in Drosophila cells and suggest that FHV subverts normal cellular pathways to assemble functional replication complexes.  相似文献   

2.
In this work, we evaluate the stability, dynamics and protein-nucleic acid interaction in Flock House virus (FHV). FHV is an RNA insect virus, non-enveloped, member of the family Nodaviridae. It is composed of a bipartite single-stranded RNA genome packaged in an icosahedral capsid of 180 copies of an identical protein (alpha protein). A fundamental property of many animal viruses is the post-assembly maturation required for infectivity. FHV is constructed as a provirion, which matures to an infectious virion by cleavage of alpha protein into beta and gamma subunits. We used high pressure, temperature and chemical denaturing agents to promote perturbation of the viral capsid. These effects were monitored by spectroscopy measurements (fluorescence, light scattering and CD) and size-exclusion chromatography. The data showed that FHV was stable to pressures up to 310 MPa at room temperature. The fluorescence emission and light scattering values showed small changes that were reversible after decompression. When we combined pressure and sub-denaturing urea concentrations (1 M), the changes were more drastic, suggesting dissociation of the capsid. However, these changes were reversible after pressure release. The complete dissociation of FHV could be observed only under high urea concentrations (10 M). There were no significant changes in emission spectra up to 5 M urea. FHV also was stable when we used temperature treatments (high and low). We also compared the effects of urea and pressure on FHV wild type and cleavage-defective mutant VLPs (virus-like particles). The VLPs and authentic particles are distinguishable by protein-RNA interactions, since VLPs pack cellular RNA and native particles contain viral RNA. Our results demonstrated that native particles are more stable than VLPs to physical and chemical treatments. Our data point to the specificity of the interaction between the capsid protein and the viral RNA. This specificity is crucial to the stability of the particle, which makes this interaction an excellent target for drug development.  相似文献   

3.
Han YH  Luo YJ  Wu Q  Jovel J  Wang XH  Aliyari R  Han C  Li WX  Ding SW 《Journal of virology》2011,85(24):13153-13163
Replication of viral RNA genomes in fruit flies and mosquitoes induces the production of virus-derived small interfering RNAs (siRNAs) to specifically reduce virus accumulation by RNA interference (RNAi). However, it is unknown whether the RNA-based antiviral immunity (RVI) is sufficiently potent to terminate infection in adult insects as occurs in cell culture. We show here that, in contrast to robust infection by Flock house virus (FHV), infection with an FHV mutant (FHVΔB2) unable to express its RNAi suppressor protein B2 was rapidly terminated in adult flies. FHVΔB2 replicated to high levels and induced high mortality rates in dicer-2 and argonaute-2 mutant flies that are RNAi defective, demonstrating that successful infection of adult Drosophila requires a virus-encoded activity to suppress RVI. Drosophila RVI may depend on the RNAi activity of viral siRNAs since efficient FHVΔB2 infection occurred in argonaute-2 and r2d2 mutant flies despite massive production of viral siRNAs. However, RVI appears to be insensitive to the relative abundance of viral siRNAs since FHVΔB2 infection was terminated in flies carrying a partial loss-of-function mutation in loquacious required for viral siRNA biogenesis. Deep sequencing revealed a low-abundance population of Dicer-2-dependent viral siRNAs accompanying FHVΔB2 infection arrest in RVI-competent flies that included an approximately equal ratio of positive and negative strands. Surprisingly, viral small RNAs became strongly biased for positive strands at later stages of infection in RVI-compromised flies due to genetic or viral suppression of RNAi. We propose that degradation of the asymmetrically produced viral positive-strand RNAs associated with abundant virus accumulation contributes to the positive-strand bias of viral small RNAs.  相似文献   

4.
Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses.  相似文献   

5.
Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside ~50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.  相似文献   

6.
Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3′ end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle.  相似文献   

7.
The infectivity of flock house virus (FHV) requires autocatalytic maturation cleavage of the capsid protein at residue 363, liberating the C-terminal 44-residue γ peptides, which remain associated with the particle. In vitro studies previously demonstrated that the amphipathic, helical portion (amino acids 364 to 385) of γ is membrane active, suggesting a role for γ in RNA membrane translocation during infection. Here we show that the infectivity of a maturation-defective mutant of FHV can be restored by viruslike particles that lack the genome but undergo maturation cleavage. We propose that the colocalization of the two defective particle types in an entry compartment allows the restoration of infectivity by γ.  相似文献   

8.
The assembly of viral RNA replication complexes on intracellular membranes represents a critical step in the life cycle of positive-strand RNA viruses. We investigated the role of the cellular chaperone heat shock protein 90 (Hsp90) in viral RNA replication complex assembly and function using Flock House virus (FHV), an alphanodavirus whose RNA-dependent RNA polymerase, protein A, is essential for viral RNA replication complex assembly on mitochondrial outer membranes. The Hsp90 chaperone complex transports cellular mitochondrial proteins to the outer mitochondrial membrane import receptors, and thus we hypothesized that Hsp90 may also facilitate FHV RNA replication complex assembly or function. Treatment of FHV-infected Drosophila S2 cells with the Hsp90-specific inhibitor geldanamycin or radicicol potently suppressed the production of infectious virions and the accumulation of protein A and genomic, subgenomic, and template viral RNA. In contrast, geldanamycin did not inhibit the activity of preformed FHV RNA replication complexes. Hsp90 inhibitors also suppressed viral RNA and protein A accumulation in S2 cells expressing an FHV RNA replicon. Furthermore, Hsp90 inhibition with either geldanamycin or RNAi-mediated chaperone downregulation suppressed protein A accumulation in the absence of viral RNA replication. These results identify Hsp90 as a host factor involved in FHV RNA replication and suggest that FHV uses established cellular chaperone pathways to assemble its RNA replication complexes on intracellular membranes.  相似文献   

9.
The identification and characterization of host cell membranes essential for positive-strand RNA virus replication should provide insight into the mechanisms of viral replication and potentially identify novel targets for broadly effective antiviral agents. The alphanodavirus flock house virus (FHV) is a positive-strand RNA virus with one of the smallest known genomes among animal RNA viruses, and it can replicate in insect, plant, mammalian, and yeast cells. To investigate the localization of FHV RNA replication, we generated polyclonal antisera against protein A, the FHV RNA-dependent RNA polymerase, which is the sole viral protein required for FHV RNA replication. We detected protein A within 4 h after infection of Drosophila DL-1 cells and, by differential and isopycnic gradient centrifugation, found that protein A was tightly membrane associated, similar to integral membrane replicase proteins from other positive-strand RNA viruses. Confocal immunofluorescence microscopy and virus-specific, actinomycin D-resistant bromo-UTP incorporation identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. Selective membrane permeabilization and immunoelectron microscopy further localized protein A to outer mitochondrial membranes. Electron microscopy revealed 40- to 60-nm membrane-bound spherical structures in the mitochondrial intermembrane space of FHV-infected cells, similar in ultrastructural appearance to tombusvirus- and togavirus-induced membrane structures. We concluded that FHV RNA replication occurs on outer mitochondrial membranes and shares fundamental biochemical and ultrastructural features with RNA replication of positive-strand RNA viruses from other families.  相似文献   

10.
RNAi is broadly used as a technique for specific gene silencing in insects but few studies have investigated the factors that can affect its efficiency. Viral infections have the potential to interfere with RNAi through their production of viral suppressors of RNAi (VSRs) and the production of viral small RNAs that can saturate and inactivate the RNAi machinery. In this study, the impact of persistent infection of the RNA viruses Flock house virus (FHV) and Macula-like virus (MLV) on RNAi efficiency was investigated in selected lepidopteran cell lines. Lepidopteran cell lines were found to be readily infected by both viruses without any apparent pathogenic effects, with the exception of Bombyx-derived Bm5 and BmN4 cells, which could not be infected by FHV. Because Sf21 cells were free from both FHV and MLV and Hi5-SF were free from FHV and only contained low levels of MLV, they were tested to evaluate the impact of the presence of the virus. Two types of RNAi reporter assays however did not detect a significant interference with gene silencing in infected Sf21 and Hi5-SF cells when compared to virus-free cells. In Hi5 cells, the presence of FHV could be easily cleared through the expression of an RNA hairpin that targets its VSR gene, confirming that the RNAi mechanism was not inhibited. Sequencing indicated that the B2 RNAi inhibitor gene of FHV and a putative VSR gene from MLV were intact in persistently infected cell lines, indicating that protection against RNAi remains essential for virus survival. It is proposed that infection levels of persistent viruses in the cell lines are too low to have an impact on RNAi efficiency in the lepidopteran cell lines and that encoded VSRs act locally at the sites of viral replication (mitochondrial membranes) without affecting the rest of the cytoplasm.  相似文献   

11.
The assembly of RNA replication complexes on intracellular membranes is an essential step in the life cycle of positive-sense RNA viruses. We have previously shown that Hsp90 chaperone complex activity is essential for efficient Flock House virus (FHV) RNA replication in Drosophila melanogaster S2 cells. To further explore the role of cellular chaperones in viral RNA replication, we used both pharmacologic and genetic approaches to examine the role of the Hsp90 and Hsp70 chaperone systems in FHV RNA replication complex assembly and function in Saccharomyces cerevisiae. In contrast to results with insect cells, yeast deficient in Hsp90 chaperone complex activity showed no significant decrease in FHV RNA replication. However, yeast with a deletion of the Hsp70 cochaperone YDJ1 showed a dramatic reduction in FHV RNA replication that was due in part to reduced viral RNA polymerase accumulation. Furthermore, the absence of YDJ1 did not reduce FHV RNA replication when the viral RNA polymerase and replication complexes were retargeted from the mitochondria to the endoplasmic reticulum. These results identify YDJ1 as an essential membrane-specific host factor for FHV RNA replication complex assembly and function in S. cerevisiae and are consistent with known differences in the role of distinct chaperone complexes in organelle-specific protein targeting between yeast and higher eukaryotes.  相似文献   

12.
The process by which nonenveloped viruses cross cell membranes during host cell entry remains poorly defined; however, common themes are emerging. Here, we use correlated in vivo and in vitro studies to understand the mechanism of Flock House virus (FHV) entry and membrane penetration. We demonstrate that low endocytic pH is required for FHV infection, that exposure to acidic pH promotes FHV-mediated disruption of model membranes (liposomes), and particles exposed to low pH in vitro exhibit increased hydrophobicity. In addition, FHV particles perturbed by heating displayed a marked increase in liposome disruption, indicating that membrane-active regions of the capsid are exposed or released under these conditions. We also provide evidence that autoproteolytic cleavage, to generate the lipophilic γ peptide (4.4 kDa), is required for membrane penetration. Mutant, cleavage-defective particles failed to mediate liposome lysis, regardless of pH or heat treatment, suggesting that these particles are not able to expose or release the requisite membrane-active regions of the capsid, namely, the γ peptides. Based on these results, we propose an updated model for FHV entry in which (i) the virus enters the host cell by endocytosis, (ii) low pH within the endocytic pathway triggers the irreversible exposure or release of γ peptides from the virus particle, and (iii) the exposed/released γ peptides disrupt the endosomal membrane, facilitating translocation of viral RNA into the cytoplasm.Flock House virus (FHV), a nonenveloped, positive-sense RNA virus, has been employed as a model system in several important studies to address a wide range of biological questions (reviewed in reference 55). FHV has been instrumental in understanding virus structure and assembly (17, 19, 45), RNA replication (2, 3, 37), and specific packaging of the genome (33, 44, 53, 54). Studies of FHV infection in Drosophila melanogaster flies have provided valuable information about the antiviral innate immune response in invertebrate hosts (29, 57). FHV is also used in nanotechnology applications as an epitope-presenting platform to develop novel vaccines and medical therapies (31, 48). In this report, we use FHV as a model system to further elucidate the means by which nonenveloped viruses enter host cells and traverse cellular membranes.During cell entry enveloped and nonenveloped viral capsid proteins undergo structural rearrangements that enable the virus to breach the membrane bilayer, ultimately releasing the viral genome or nucleocapsid into the cytoplasm. These entry-related conformational changes have been well characterized for enveloped viruses, which use membrane fusion to cross membrane bilayers (reviewed in reference 59). However, the mechanisms nonenveloped viruses employ to breach cellular membranes are poorly defined. Recently, significant parallels in the mechanisms of cell entry have emerged for a diverse group of nonenveloped viruses. Specifically, programmed capsid disassembly and release of small membrane-interacting peptides appear to be a common theme (reviewed in references 4 and 50).The site of membrane penetration depends upon the route of virus entry into the cell. Viruses can enter host cells via several distinct pathways, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, lipid raft-mediated endocytosis, and macropinocytosis (reviewed in reference 40). The two primary routes of virus entry are clathrin-mediated endocytosis, where viruses encounter an acidic environment, and caveolae-mediated endocytosis, which is pH neutral. Many nonenveloped viruses, including adenovirus (24, 52), parvovirus (6), and reovirus (34, 49), require acidic pH during entry. However, numerous nonenveloped viruses have acid-independent entry mechanisms, including rotavirus (28), polyomavirus (43), simian virus 40 (41, 51), and several members of the picornavirus family (7, 14, 32, 42).Upon reaching the appropriate site of membrane penetration, nonenveloped virus capsid proteins are triggered by cellular factors, such as receptor binding and/or exposure to low pH within endosomes, to undergo conformational changes necessary for membrane interactions. These tightly regulated structural rearrangements may include capsid disassembly, exposure of hydrophobic regions, and/or release of membrane-lytic factors. For example, low pH within endosomes triggers adenovirus capsid disassembly, leading to the release of the membrane lytic protein VI (24, 60). In contrast, poliovirus is activated for membrane penetration by a pH-independent mechanism. Receptor binding triggers the poliovirus capsid to undergo a conformational change, resulting in the exposure of the N terminus of VP1 and the release of VP4 (18, 23), both of which facilitate membrane interactions (20). Notably, even though some viruses, such as reovirus, enter cells via an acidic endocytic pathway, membrane penetration is not acid activated (16), indicating that exposure to low pH and membrane penetration are not always mutual events.The overall simplicity of the FHV capsid, composed of a single gene product, along with the wealth of available high-resolution structural information (reviewed in reference 45) make FHV an ideal candidate for understanding nonenveloped virus entry and infection. FHV, a member of the family Nodaviridae, is a nonenveloped insect virus with a bipartite RNA genome surrounded by an icosahedral protein capsid. The quasi-equivalent T=3 virion (∼300-Å diameter) is initially composed of 180 copies of a single coat precursor protein α (44 kDa). Following capsid assembly the α protein undergoes autocatalytic cleavage to generate two particle-associated cleavage products, a large N-terminal fragment, β (39 kDa), and a small C-terminal fragment, γ (4.4 kDa) (22), creating the infectious virion (46). Mutant FHV particles that do not undergo autocatalytic cleavage, and therefore cannot release the γ peptide, are not infectious (46). It has been hypothesized that these particles are noninfectious because they cannot mediate membrane penetration, but this has never been shown directly.The FHV X-ray structure revealed that the γ peptides were located inside the capsid shell with residues 364 to 385 forming amphipathic helices (19). Subsequent studies showed that the FHV capsid is dynamic, with γ transiently exposed to the exterior of the capsid (11). These findings led to a structure-based model of FHV membrane disruption in which the dynamic γ peptides are reversibly exposed to the surface of the capsid (11), “sampling” the environment until they encounter the appropriate cellular trigger. The virus is then activated to undergo an irreversible conformational change in which the γ helical bundles located at each fivefold axis are externalized and released from the virus particle (17, 19). Upon release, the γ pentameric helical bundles are predicted to insert into and create a local disruption of the membrane bilayer to allow the RNA to enter the cytoplasm (10).While biochemical and structural studies have provided the foundation for a model of FHV cell entry, more rigorous in vivo and in vitro studies are necessary to confirm the ideas put forth in this model. Here, we clarify the route of FHV entry and characterize the tightly regulated events required for FHV membrane penetration. We demonstrate for the first time that low endocytic pH is required for FHV infection, that acidic pH promotes FHV membrane penetration, and that particles exposed to low pH exhibit increased hydrophobicity. In addition, we provide evidence that mutant, cleavage-defective particles are blocked specifically at the membrane penetration step during cell entry. Taken together, these findings offer an experimentally supported model of FHV entry into host cells. In addition, these results add to the accumulating evidence that nonenveloped viruses employ common mechanisms to traverse cellular membranes.  相似文献   

13.
Canine parvovirus (CPV) is a small, nonenveloped virus that is a host range variant of a virus which infected cats and changes in the capsid protein control the ability of the virus to infect canine cells. We used a variety of approaches to define the early stages of cell entry by CPV. Electron microscopy showed that virus particles concentrated within clathrin-coated pits and vesicles early in the uptake process and that the infecting particles were rapidly removed from the cell surface. Overexpression of a dominant interfering mutant of dynamin in the cells altered the trafficking of capsid-containing vesicles. There was a 40% decrease in the number of CPV-infected cells in mutant dynamin-expressing cells, as well as a approximately 40% decrease in the number of cells in S phase of the cell cycle, which is required for virus replication. However, there was also up to 10-fold more binding of CPV to the surface of mutant dynamin-expressing cells than there was to uninduced cells, suggesting an increased receptor retention on the cell surface. In contrast, there was little difference in virus binding, virus infection rate, or cell cycle distribution between induced and uninduced cells expressing wild-type dynamin. CPV particles colocalized with transferrin in perinuclear endosomes but not with fluorescein isothiocyanate-dextran, a marker for fluid-phase endocytosis. Cells treated with nanomolar concentrations of bafilomycin A1 were largely resistant to infection when the drug was added either 30 min before or 90 min after inoculation, suggesting that there was a lag between virus entering the cell by clathrin-mediated endocytosis and escape of the virus from the endosome. High concentrations of CPV particles did not permeabilize canine A72 or mink lung cells to alpha-sarcin, but canine adenovirus type 1 particles permeabilized both cell lines. These data suggest that the CPV entry and infection pathway is complex and involves multiple vesicular components.  相似文献   

14.
Flock House virus (FHV; Nodaviridae) is a positive-strand RNA virus that encapsidates a bipartite genome consisting of RNA1 and RNA2. We recently showed that specific recognition of these RNAs for packaging into progeny particles requires coat protein translated from replicating viral RNA. In the present study, we investigated whether the entire assembly pathway, i.e., the formation of the initial nucleating complex and the subsequent completion of the capsid, is restricted to the same pool of coat protein subunits. To test this, coat proteins carrying either FLAG or hemagglutinin epitopes were synthesized from replicating or nonreplicating RNA in the same cell, and the resulting particle population and its RNA packaging phenotype were analyzed. Results from immunoprecipitation analysis and ion-exchange chromatography showed that the differentially tagged proteins segregated into two distinct populations of virus particles with distinct RNA packaging phenotypes. Particles assembled from coat protein that was translated from replicating RNA contained the FHV genome, whereas particles assembled from coat protein that was translated from nonreplicating mRNA contained random cellular RNA. These data demonstrate that only coat proteins synthesized from replicating RNA partake in the assembly of virions that package the viral genome and that RNA replication, coat protein translation, and virion assembly are processes that are tightly coupled during the life cycle of FHV.  相似文献   

15.
16.
Lysosomotropic drugs such as NH4Cl have been useful for studying the role of low pH in early events in virus infection. NH4Cl blocks the production of infectious progeny virus in mammalian reovirus-infected cells. The inhibitory effect of NH4Cl is mediated by an inhibition of intracellular digestion of reovirus outer capsid proteins. In vitro digestion of viral outer capsid proteins produces infectious partially uncoated particles, called intermediate subviral particles, which are no longer inhibited by the presence of NH4Cl. These results indicate that proteolytic processing of reovirus outer capsid proteins takes place in a low pH compartment of the cell and is an essential step in the viral infectious cycle.  相似文献   

17.
Enwrapment by membrane cisternae has emerged recently as a mechanism of envelopment for large enveloped DNA viruses, such as herpesviruses, poxviruses, and African swine fever (ASF) virus. For both ASF virus and the poxviruses, wrapping is a multistage process initiated by the recruitment of capsid proteins onto membrane cisternae of the endoplasmic reticulum (ER) or associated ER-Golgi intermediate membrane compartments. Capsid assembly induces progressive bending of membrane cisternae into the characteristic shape of viral particles, and envelopment provides virions with two membranes in one step. We have used biochemical assays for ASF virus capsid recruitment, assembly, and envelopment to define the cellular processes important for the enwrapment of viruses by membrane cisternae. Capsid assembly on the ER membrane, and envelopment by ER cisternae, were inhibited when cells were depleted of ATP or depleted of calcium by incubation with A23187 and EDTA or the ER calcium ATPase inhibitor, thapsigargin. Electron microscopy analysis showed that cells depleted of calcium were unable to assemble icosahedral particles. Instead, assembly sites contained crescent-shaped and bulbous structures and, in rare cases, empty closed five-sided particles. Interestingly, recruitment of the capsid protein from the cytosol onto the ER membrane did not require ATP or an intact ER calcium store. The results show that following recruitment of the virus capsid protein onto the ER membrane, subsequent stages of capsid assembly and enwrapment are dependent on ATP and are regulated by the calcium gradients present across the ER membrane cisternae.  相似文献   

18.
Flock house virus (FHV) is a small icosahedral insect virus with a bipartite, messenger-sense RNA genome. Its T=3 icosahedral capsid is initially assembled from 180 subunits of a single type of coat protein, capsid precursor protein alpha (407 amino acids). Following assembly, the precursor particles undergo a maturation step in which the alpha subunits autocatalytically cleave between Asn363 and Ala364. This cleavage generates mature coat proteins beta (363 residues) and gamma (44 residues) and is required for acquisition of virion infectivity. The X-ray structure of mature FHV shows that gamma peptides located at the fivefold axes of the virion form a pentameric helical bundle, and it has been suggested that this bundle plays a role in release of viral RNA during FHV uncoating. To provide experimental support for this hypothesis, we generated mutant coat proteins that carried deletions in the gamma region of precursor protein alpha. Surprisingly, we found that these mutations interfered with specific recognition and packaging of viral RNA during assembly. The resulting particles contained large amounts of cellular RNAs and varying amounts of the viral RNAs. Single-site amino acid substitution mutants showed that three phenylalanines located at positions 402, 405, and 407 of coat precursor protein alpha were critically important for specific recognition of the FHV genome. Thus, in addition to its hypothesized role in uncoating and RNA delivery, the C-terminal region of coat protein alpha plays a significant role in recognition of FHV RNA during assembly. A possible link between these two functions is discussed.  相似文献   

19.
S L Rhode  rd 《Journal of virology》1982,42(3):1118-1122
We established a persistent infection in L 929 cells with the DA strain of Theiler's murine encephalomyelitis virus. Our studies showed that only a small number of cells in the cultures contained infectious virus or viral antigen. A role for interferon in the maintenance of persistence was suggested. Viral isolates from the cultures were not temperature sensitive, nor did they contain viral capsid polypeptide mutations or defective interfering particles. T1 oligonucleotide maps showed evidence of mutation in two of three isolates.  相似文献   

20.
To begin a successful infection, viruses must first cross the host cell plasma membrane, either by direct fusion with the membrane or by receptor-mediated endocytosis. After release into the cytoplasm those viruses that replicate in the nucleus must target their genome to that location. We examined the role of cytoplasmic transport of the canine parvovirus (CPV) capsid in productive infection by microinjecting two antibodies that recognize the intact CPV capsid into the cytoplasm of cells and also by using intracellular expression of variable domains of a neutralizing antibody fused to green fluorescence protein. The two antibodies tested and the expressed scFv all efficiently blocked virus infection, probably by binding to virus particles while they were in the cytoplasm and before entering the nucleus. The injected antibodies were able to block most infections even when injected 8 h after virus inoculation. In control studies, microinjected capsid antibodies did not interfere with CPV replication when they were coinjected with an infectious plasmid clone of CPV. Cytoplasmically injected full and empty capsids were able to move through the cytosol towards the nuclear membrane in a process that could be blocked by nocodazole treatment of the cells. Nuclear transport of the capsids was slow, with significant amounts being found in the nucleus only 3 to 6 h after injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号