首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The spring diatom bloom in Loch Ewe (N.W. Scotland) during 1980 has already been the subject of a detailed study. As an extension of this work the component fatty acids and sterols of the diatom lipids have been analysed throughout the bloom period. The results confirm that detailed changes occur in the lipid composition of diatoms during their normal growth. In addition, the data are discussed in relation to published analyses of diatom lipids and suggestions made as to reasons for the considerable variation in reported fatty acid composition.  相似文献   

2.
Abundance and composition of microplankton were studied overa period of 2 years at two depths in Villefranche Bay (LigurianSea, NW Mediterranean Sea). Diatoms dominated the microplanktonin late spring and autumn, whereas dinoflagellates composedthe major part of the microplankton in summer. The silicoflagellateDictyocha fibula and the diatom Thalassionema frauenfeldii dominatedin winter. Ciliates showed low variability throughout the yearwith the lowest abundance in February and an increase whichcoincided with the diatom maxima during autumn in both years.In 1998, the spring bloom (in May) was mainly composed of dinoflagellatesnear the surface and of diatoms in deeper layers. Subsurfacediatom maxima were observed in August–September and November.In 1999, diatoms peaked in May both at the surface and at thedepth of 50 m. They showed a strong maximum in October. Dinoflagellatesand tintinnids showed maxima in early November. Comparisonswith previous studies reveal that (i) changes in species compositionhave not been significant, (ii) the silicoflagellate’sabundance is lower during the present study, (iii) the sequentialspring bloom is composed of a pico-nanoplankton bloom in Marchand microphytoplankton in May, whereas in other western Mediterraneanareas the spring microphytoplankton bloom is reported in Februaryand March, (iv) high water transport through the Corsica channelcoinciding with low or negative winter values of North AtlanticOscillation (NAO) index are associated with the anomalous strongdevelopment of the spring diatom blooms in the Bay of Villefranche,whereas the usual trend is the lack of or weak development ofthe spring diatom bloom. This feature may determine the natureand the fate of primary production and the interannual variabilityin the relative importance of the microbial food web versusthe microbial loop.  相似文献   

3.
Feeding activity, selective grazing and the potential grazing impact of two dominant grazers of the Polar Frontal Zone, Calanus simillimus and Rhincalanus gigas, and of copepods < 2 mm were investigated with incubation experiments in the course of an iron fertilized diatom bloom in November 2000. All grazers were already actively feeding in the low chlorophyll waters prior to the onset of the bloom. C. simillimus maintained constant clearance rates and fed predominantly on diatoms. R. gigas and the small copepods strongly increased clearance and ingestion of diatoms in response to their enhanced availability. All grazers preyed on microzooplankton, most steadily on ciliates, confirming the view that pure herbivory appears to be the exception rather than the rule in copepod feeding. The grazers exhibited differences in feeding behavior based on selectivity indices. C. simillimus and R. gigas showed prey switching from dinoflagellates to diatoms in response to the phytoplankton bloom. All grazers most efficiently grazed on large diatoms leading to differences in daily losses for large and small species, e.g. Corethron sp. or Thalassionema nitzschioides. Species-specific diatom mortality rates due to grazing suggest that the high feeding activity of C. simillimus prior to and during the bloom played a role in shaping diatom population dynamics.  相似文献   

4.
Dinoflagellate blooms in coastal upwelling systems are restricted to times and places with reduced exchange and mixing. The Rías Baixas of Galicia are four bays in the NW Iberian upwelling with these characteristics where harmful algal blooms (HABs) of dinoflagellates are common. These blooms are especially recurrent at the end of the upwelling season, when autumn downwelling amplifies accumulation and retention through the development of a convergence front in the interior of Rías. Because oceanic water enters the Rías during downwelling, it has been hypothesised that dinoflagellate blooms originate by the advection and subsequent accumulation of allochthonous populations. To examine this possibility, we studied the microplankton succession in relation to hydrographic variability in the Ría de Vigo (one of these four bays) along an annual cycle making use of a high sampling frequency. The results indicated that upwelling lasted from May to August, with downwelling prevailing in winter. Microplankton during upwelling, although dominated by diatoms, evidenced a progressive increase in the importance of dinoflagellates, which achieved maximum abundance at the end of the upwelling season. Thus, diatoms characterised the spring bloom, while diatoms and autochthonous dinoflagellates composed the autumn bloom. Diatoms dominated during the first moments of the autumn downwelling and dinoflagellates were more abundant later, after stronger downwelling removed diatoms from the water column. Since the dinoflagellates selected by downwelling belonged to the local community, it is concluded that advection of alien populations is not required to explain these autumn blooms.  相似文献   

5.
The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995-2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms.  相似文献   

6.
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.  相似文献   

7.
The fluctuations of selected types of micro-organisms were considered in relation to the vernal phytoplankton bloom, consisting mainly of diatoms, in the Tvärminne area in March-June 1978. Water samples were taken almost daily from the surface layer during the bloom, which comprised two biomass (chlorophyll a) peaks.
Viable bacteria corresponded closely with the course of the bloom, the bacterial maxima occurring some days after the phytoplankton maximum. The bacteria apparently multiplied by mainly utilizing organic compounds released from decaying phytoplankton cells.
Proteolytic bacteria had their maximum below the ice in the low-salinity surface layer, but showed a positive correlation with the bloom. They evidently utilized proteins supplied by domestic effluents as well as those released from phytoplankton cells. Yeasts showed no distinct connection with the bloom; they were probably unable to compete for nutrients with bacteria. The low numbers of yeasts during the bloom can mainly be ascribed to the mixing occurring after the break-up of the ice, which decreased the yeasts of terrestrial origin in the surface layer.  相似文献   

8.
Observations of a marked cessation of feeding in filter feeding animals maintained in flowing Narragansett Bay seawater in June 1985 drew our attention to a bloom of a golden alga 2 μm in diameter at unprecedented populations of 109 cells. L?1. This picoplankter lacked morphological features useful in discriminating it from other similar sized forms with either phase contrast or epifluorescence light microscopy. Natural populations of picoplankton, obtained from the height of the bloom until its decline, were examined in thin section with transmission electron microscopy. A cell with a single chloroplast, nucleus, and mitochondrion and an unusual exocellular polysaccharide-like layer was apparently the bloom alga. The ultrastructure of this alga is consistent with that of the Chrysophyceae, and a new genus and species, Aureococcus anophagefferens is described. Attempts to grow this previously unrecognized picoplanktonic alga as an obligate phototroph failed and only yielded cultures of other previously described picoalgae. Facultative and obligate phagotrophic protists with ingested cells of Aureococcus were only observed as the bloom waned and minute diatoms became common. Cells of A. anophagefferens with virus particles typical for picoalgae occurred throughout the bloom. Populations of the usually dominant photosynthetic picoplankter, the cyanobacterium Synechococcus Nägeli, were depressed during the bloom. This could be due in part to selective grazing on Synechococcus rather than Aureococcus by elevated populations of Calycomonas ovalis Wulff which accompanied the algal bloom.  相似文献   

9.
10.
A bloom of Cerataulina pelagica dominated the sea area off the north-east coast of New Zealand for three months in the summer of 1982–83, and has been related to unusually calm conditions associated with an unusually low Southern Oscillation Index. Deaths of benthic shellfish during the bloom were attributed to anoxia induced by the bacterial decay of the diatom cells. Death of bony fish caught on long-lines was attributed to anoxia and the clogging of the gills with mucilage produced by the diatoms.  相似文献   

11.
Grazing by southern mullet, Liza richardsoni (Smith), on surf diatoms occurring in bloom concentrations off an ocean-exposed East Cape beach, South Africa, was investigated. Field observations and stomach content analysis demonstrated that surf diatoms taken from the air-water interface were a principal source of food. A qualitative examination of stomach contents revealed a feeding transition from planktonic carnivore in juveniles to a diet consisting entirely of surf diatoms in larger fishes. This change in diet commonly occurred at a standard length of 50–135 mm. Fish larger than 135 mm fed entirely on surf diatoms which were ingested together with large quantities of beach sediment. Grazing on surf diatoms only took place during daylight hours. Energy, ash, protein, fat and carbohydrate content determinations indicate a high food quality of surf diatoms. It is concluded that surf diatom accumulations form a richly concentrated and reliable food source of high nutritional quality for these fish. Possible widespread grazing on surf diatoms by mullets is considered.  相似文献   

12.
Observations during the Joint Global Ocean Flux Study (JGOFS)North Atlantic Bloom Experiment in 1989 are compared with amixed-layer model of phytoplankton seasonal succession in whichthe latitudinal variation of the succession is driven by physicalforcing. In the model, the first phytoplankton groups to growat the end of the winter are those with the fastest intrinsicgrowth rates: the phytoflagellates and picophytoplankton. Theincreases of these groups are soon halted by the rapid growthof microzooplankton and heteroflagellates whereupon they aresucceeded by diatoms, the next fastest growers. With depletionof silicate, the diatom bloom ends and is briefly replaced byphytoflagellates and picophytoplankton, before these in turnare replaced by slower growing dinoflagellates. Differencesin the physical forcing cause the timings and magnitudes ofthese changes to vary with latitude. By sampling the model resultsat the times and places of the JGOFS observations, it is shownthat the major changes of populations and nutrients are reproduced,as are many production and grazing rates. The model resultssuggest the nature of nutrient utilization in the region. Whilenitrate and silicate are both reduced to low values at 47N,only silicate is depleted at 60N. Nitrate is not depleted atnorthern latitudes due to the greater depth of the mixed layer,more intense vertical mixing and the shorter season, so thatphytoplankton have more nutrients to utilize and a shorter timein which to do it. Phytoflagellates and picophytoplankton areunable to utilize all the inorganic nitrogen because of thegrazing by the micrograzers, and diatoms because of silicatedepletion. Dinoflagellates are slow growing and only have sufficienttime to deplete the nitrogen at low latitudes. There is no needto invoke limitation by a trace nutrient, such as iron, to reproducethe events in the NE Atlantic during 1989.  相似文献   

13.
Selective grazing of a calanoid copepod Temora longicornis was measured during different stages of a Phaeocystis globosa bloom, in order to reveal (1) if T. longicornis feeds on single cells and/or colonies of P. globosa in the presence of alternative food sources, (2) if copepod food selection changes during the initiation, maintenance, collapse and decay of a P. globosa bloom and (3) if P. globosa dominated food assemblage provides a good diet for copepod egg production. Our results show low but constant feeding on small colonies of P. globosa, irrespective of the type or concentration of alternative food sources. In contrast, feeding on single cells was never significant, and the total contribution of P. globosa to carbon ingestion of T. longicornis was minor. T. longicornis fed most actively on the decaying colonies, whereas during the peak of the bloom copepods selected against P. globosa. Mostly, T. longicornis fed unselectively on different food particles: before the bloom, the major part of the diet consisted of diatoms, whereas during and after the bloom copepod diet was dominated by dinoflagellates and ciliates. Egg production was highest during the decay of the bloom, coinciding with highest proportional ingestion of heterotrophic organisms, but was not seriously reduced even during the peak of the bloom. We conclude that P. globosa blooms should not threaten survival of copepod populations, but the population recruitment may depend on the type (and concentration) of the dominant heterotrophs present during the blooms. Due to relatively unselective grazing, the impact of T. longicornis to the initiation of a Phaeocystis bloom is considered small, although grazing on decaying colonies may contribute to the faster termination of a bloom.  相似文献   

14.
Neustonic organisms inhabit the sea surface microlayer (SML) and have important roles in marine ecosystem functioning. Here, we use high‐throughput 18S rRNA gene sequencing to characterize protist and fungal diversity in the SML at a coastal time‐series station and compare with underlying plankton assemblages. Protist diversity was higher in February (pre‐bloom) compared to April (spring bloom), and was lower in the neuston than in the plankton. Major protist groups, including Stramenopiles and Alveolata, dominated both neuston and plankton assemblages. Chrysophytes and diatoms were enriched in the neuston in April, with diatoms showing distinct changes in community composition between the sampling periods. Pezizomycetes dominated planktonic fungi assemblages, whereas fungal diversity in the neuston was more varied. This is the first study to utilize a molecular‐based approach to characterize neustonic protist and fungal assemblages, and provides the most comprehensive diversity assessment to date of this ecosystem. Variability in the SML microeukaryote assemblage structure has potential implications for biogeochemical and food web processes at the air‐sea interface.  相似文献   

15.
María Trigueros  Juan  Orive  Emma 《Hydrobiologia》2001,444(1-3):119-133
Seasonal changes in the diatom and dinoflagellate assemblages were examined in the neritic zone of the Urdaibai estuary (north Spain) with regard to some major physical and chemical variables during an annual cycle. A total of 81 diatoms and 38 dinoflagellates were identified and quantified during the study period. Both groups displayed a distinctive pattern of seasonal succession. The seasonal distribution of the Shannon index showed a trend of increasing values from the upper estuary to the lower neritic segment. The diatom diversity maxima were observed in February, April and September, and dinoflagellate maxima in April–May, July and October. Diatoms dominated the assemblages, reaching 1×106 cells l–1 from April to September. A shift from large diatoms and dinoflagellates to small bloom-forming taxa was observed during winter–early spring. A spring diatom bloom composed of Rhizosolenia spp. was observed in April, while small chain-forming taxa (chiefly Chaetoceros spp.) dominated from June to September. Cell maxima for both groups in late summer were produced by the diatoms Chaetoceros salsugineum and Skeletonema costatum, and by the dinoflagellates Heterocapsa pygmaea and Peridinium quinquecorne. Silicate availability by river supply and strong tidal-mixing of the water column seem to determine the year-round dominance of diatoms over dinoflagellates.  相似文献   

16.
In this article, we show by mesocosm experiments that winter and spring warming will lead to substantial changes in the spring bloom of phytoplankton. The timing of the spring bloom shows only little response to warming as such, while light appears to play a more important role in its initiation. The daily light dose needed for the start of the phytoplankton spring bloom in our experiments agrees well with a recently published critical light intensity found in a field survey of the North Atlantic (around 1.3 mol photons m?2 day?1). Experimental temperature elevation had a strong effect on phytoplankton peak biomass (decreasing with temperature), mean cell size (decreasing with temperature) and on the share of microplankton diatoms (decreasing with temperature). All these changes will lead to poorer feeding conditions for copepod zooplankton and, thus, to a less efficient energy transfer from primary to fish production under a warmer climate.  相似文献   

17.
Viruses as Partners in Spring Bloom Microbial Trophodynamics   总被引:33,自引:26,他引:7       下载免费PDF全文
Population sizes of algae, bacteria, heterotrophic flagellates, and viruses were observed through the 1989 spring diatom bloom in Raunefjorden in western Norway. The culmination of the diatom bloom was followed by a peak in the concentration of bacteria and an increase in the concentration of heterotrophic flagellates, a pattern consistent with the concept of a food chain from photosynthetically produced organic material, through bacteria, to bacterivorous flagellates. The concentration of viruses varied through the spring bloom from 5 × 105 in the prebloom situation to a maximum of 1.3 × 107 viruses ml−1 1 week after the peak of the diatom bloom. Coinciding with the collapse in the diatom bloom, a succession of bacteria and viruses was observed in the mucous layer surrounding dead or senescent diatoms, with an estimated maximum of 23% of the total virus population attached to the diatoms. The dynamic behavior observed for the virus population rules out the possibility that it is dominated by inactive species, and the viruses are suggested to be active members of the microbial food web as agents causing lysis in parts of the bacterial population, diverting part of the bacterial production from the predatory food chain.  相似文献   

18.
We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (Tc) as high as −3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world.  相似文献   

19.
台湾海峡上升流区浮游植物对营养盐添加的响应   总被引:3,自引:0,他引:3  
2006年6月在台湾海峡近岸上升流区通过表层水体营养盐添加的现场培养实验,研究该海区营养盐限制情况及其浮游植物水华产生的主要影响因素.对营养盐,叶绿素a浓度和浮游植物细胞丰度进行了测定,结果表明,实验中不存在明显的硅限制;氮磷营养盐均存在明显的限制,且氮限制情况更为严重.营养盐添加后,冰河拟星杆藻(Asterionellopsis glacialis)等硅藻迅速生长成为优势藻种,其对氮磷的利用机制有所不同.对氮营养盐采取吸收后迅速同化利用,相较于硝酸盐的补充,氨氮补充条件下优势硅藻更易迅速生长并迅速死亡;对磷营养盐的利用则由于体内磷库的存在,采用迅速吸收后贮存在体内慢慢消耗的利用机制.氮营养盐的补充是上升流期间浮游植物水华产生的主要因素.  相似文献   

20.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号