首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was to test whether the recently described endogenous ligand for the cannabinoid receptor; arachidonyl-ethanolamide (anandamide, ANA), may produce similar effects on pregnancy as the main psychoactive component of marihuana: Δ9-tetrahydrocannabinol (THC) in rats. ANA, THC (0.02 mg/kg i.p./day, respectively) or vehicle were injected daily over the third week of pregnancy. The pregnant rats were either killed on day 21 of pregnancy or followed up to delivery. Results show a significant increase in the duration of pregnancy after both THC and ANA treatment. Both drugs caused an increase in the frequency of stillbirths. The mothers' hormone contents in tissues and sera were measured. Decreased LH content was observed in the serum of treated animals. No changes in FSH content were observed either in the pituitary or in the sera. Pituitary prolactin (PRL) levels was lower in ANA treated animals as compared both to controls or THC treated subjects. The serum PRL content decreased in all experimental groups. Decrease in serum progesterone was more prominent in treated rats. Serum levels of prostaglandins (PGF 1 and PGF 2) were significantly decreased after THC and ANA treatment. We conclude that ANA has the same tendency to change reproductory parameters in pregnant rats as THC, although in some cases the effects of ANA were slightly different from that of THC. Both endogenous and exogenous cannabinoids inhibit PG synthesis in pregnant rats and this maybe responsible for the delay constitute the mechanism in the onset of labour.  相似文献   

2.
The hypothalamus plays an important role in the regulation of several visceral processes, including food intake, thermoregulation and control of anterior pituitary secretion.Endogenous cannabinoids and CB(1) cannabinoid receptors have been found in the hypothalamus. In the present review, we would like to clarify the role of the endocannabinoid system in the regulation of the above-mentioned visceral functions.There is historical support for the role of marihuana (i.e. exogenous cannabinoids) in the regulation of appetite. Endocannabinoids also stimulate food intake. Furthermore, the specific CB(1) receptor antagonist SR141716 reduces food intake. Leptin treatment decreases endocannabinoid levels in normal rats and ob/ob mice. These findings provide evidence for the role of the hypothalamic endocannabinoid system in food intake and appetite regulation.Cannabinoids can change body temperature in a dose-dependent manner. High doses cause hypothermia while low doses cause hyperthermia. Cannabinoid administration decreases heat production. It seems that the effects of can- nabinoids on thermoregulation is exerted by altering some neurochemical mediator effects at both the presynaptic and postsynaptic level.THC and endocannabinoids have mainly inhibitory effects on the regulation of reproduction. Administration of anandamide (AEA) decreases serum luteinizing hormone (LH) and prolactin (PRL) levels. AEA causes a prolongation of pregnancy in rats and temporarily inhibits the postnatal development of the hypothalamo-pituitary axis in offspring. The action of AEA on the reproductory parameters occurs at both the hypothalamic and pituitary level. CB(1) receptors have also been found in the anterior pituitary. Further, LH levels in CB(1) receptor-inactivated mice were decreased compared with wild-type mice.Taken together, all these observations suggest that the endocannabinoid system is playing an important part in the regulation of the mentioned visceral functions and it provides the bases for further applications of cannabinoid receptor agonists and/or antagonists in visceral diseases regulated by the hypothalamus.  相似文献   

3.
4.
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior.  相似文献   

5.
Cannabinoids exert a variety of physiological and pharmacological responses in humans through interaction with specific cannabinoid receptors. Cannabinoid receptors described to date belong to the seven-transmembrane-domain receptor superfamily and are coupled through the inhibitory G(i) protein to adenylyl cyclase inhibition. However, downstream signal transduction mechanisms triggered by cannabinoids are poorly understood. We examined here the involvement of the phosphoinositide 3-kinase (PI3K)/PKB pathway in the mechanism of action of cannabinoids in human prostate epithelial PC-3 cells. Cannabinoid receptors CB(1) and CB(2) are expressed in these cells, as shown by RT-PCR, Western blot and immunofluorescence techniques. Treatment of PC-3 cells with either Delta(9)-tetrahydrocannabinol (THC), the major psychoactive ingredient of marijuana, or R-(+)-methanandamide (MET), an analogue of the endogenous cannabinoid anandamide, increased phosphorylation of PKB in Thr308 and Ser473. The stimulation of PKB induced by cannabinoids was blocked by the two cannabinoid receptor antagonists, SR 141716 and SR 144528, and by the PI3K inhibitor LY 294002. These results indicate that activation of cannabinoid receptors in PC-3 cells stimulate the PI3K/PKB pathway. We further investigated the involvement of Raf-1/Erk activation in the mechanism of action of cannabinoid receptors. THC and MET induced translocation of Raf-1 to the membrane and phosphorylation of p44/42 Erk kinase, which was reversed by cannabinoid receptor antagonists and PI3K inhibitor. These results point to a sequential connection between cannabinoid receptors/PI3K/PKB pathway and Raf-1/Erk in prostate PC-3 cells. We also show that this pathway is involved in the mechanism of NGF induction exerted by cannabinoids in PC-3 cells.  相似文献   

6.
7.
The characterization of cannabinoid receptors and signal transduction mechanisms provided the impetus for the searching for endogenous ligands for this system. The result was a family of fatty acid derivatives that interact with cannabinoid receptors to varying degrees. The two ligands that have received the most attention are anandamide (AN) and 2-arachidonolyl-glycerol (Ara-Gl). They are both present in central as well as peripheral tissues. Mechanisms for the synthesis and metabolism of AN have been described. Presently, the physiological stimuli for production and release of AN are unknown. As a result, elucidation of its physiological role remains elusive. However, it seems reasonable to conclude that both AN and 2-Ara-Gl interact with cannabinoid receptors in both peripheral and central tissue to produce a wide range of effects. Administration of these ligands to laboratory animals produce effects that are quite similar to those elicited by delta9-tetrahydrocannabinol (THC), the psychoactive constituent in marijuana. Nevertheless, there are some pharmacological differences between the plant-derived THC and the endogenous cannabinoids that could be due to either pharmadynamic or pharmacokinetics dissimilarities. Extensive structure-activity relationship studies have provided some vital insights into the actions of the endogenous ligands. First and foremost, systematic structural alterations in AN have additional support that it is acting at the cannabinoid receptors in a fashion similar to that of THC. Development of metabolically stable analogs of AN, as well as those with greater receptor affinity, have helped substantiate AN and THC similarities. Nevertheless, pharmacological differences remain between the endogenous and exogenous ligands. Whether these differences are due to the nature of their interaction with the cannabinoid receptors, activation of unique signaling pathways, interactions with non-cannabinoid receptors, or pharmacokinetic considerations remain to be resolved.  相似文献   

8.
Cannabinoid receptors have been implicated in the regulation of blood flow in the cerebral vasculature. Because the nucleus accumbens (NAc) shows high levels of central cannabinoid receptor 1 (CB1) expression we examined the effects of cannabinoids on the local transient alkaline shifts and increases in extracellular oxygen induced by electrical stimulation of the medial forebrain bundle (MFB) in conscious animals. These changes result from increases in cerebral blood flow (CBF) and metabolism in the NAc that are evoked by the stimulation. Oxygen and pH changes were monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in the NAc of freely moving rats. Administration of the cannabinoid receptor agonist WIN55,212-2 potently inhibited extracellular oxygen and pH changes, an effect that was reversed and prevented by pre-treatment with the CB1 receptor antagonists SR141716A and AM251. The effects on pH following WIN55,212-2 were similar to those following nimodipine, a recognized vasodilator. When AM251 was injected alone, the amplitude of electrically evoked pH shifts was unaffected. Administration of AM404 and VDM11, endocannabinoid transport inhibitors, partially inhibited pH transients in a CB1 receptor-dependent manner. The present findings suggest that CB1 receptor activation modulates changes in two well-established indices of local blood flow and metabolism resulting from electrically evoked activation of ascending fibers. Although endogenous cannabinoid tone alone is not sufficient to modify these responses, uptake blockade demonstrates that the system has the potential to exert CB1-specific effects similar to those of full agonists.  相似文献   

9.
The marijuana-derived cannabinoid Delta(9)-tetrahydrocannabinol (THC) has been shown to be immunosuppressive. We report that THC induces the immunosuppressive cytokine TGF-beta by human peripheral blood lymphocytes (PBL). The ability of THC to stimulate TGF-beta production was blocked by the CB2 receptor specific antagonist SR144528 but not by the CB1 specific antagonist AM251. Furthermore, our data suggest that TGF-beta actively regulates lymphocyte CB2 receptor expression in an autocrine and paracrine manner. Whereas the addition of recombinant TGF-beta to PBL cultures downregulated CB2 receptor expression, anti-TGF-beta antibody treatment increased CB2 receptor expression. We conclude that one mechanism by which THC contributes to immune suppression is by stimulating an enhanced production of lymphocyte TGF-beta.  相似文献   

10.
The marijuana cannabinoid, delta 9-tetrahydrocannabinol (THC), suppresses immunity to Legionella pneumophila and development of Th1 activity and cell-mediated immunity. In the current study, THC effects on cytokines regulating the development of Th1 cells were examined. BALB/c mice showed significant increases in serum IL-12 and IFN-gamma within hours of infection; however, the levels of these Th1-promoting cytokines as well as resistance to a challenge infection were suppressed by THC (8 mg/kg) injected 18 h before priming. The Th2-promoting cytokine, IL-4, was increased within hours of a Legionella infection and was further increased by THC treatment. These results suggested that THC injection suppressed the cytokine environment promoting Th1 immunity. In additional experiments, THC pretreatment and infection of IL-4 knockout mice showed that serum IL-12 and IFN-gamma were suppressed equally in both knockout and normal mice. This suggested that the drug-induced increase in IL-4 was not responsible for the decreases in serum IL-12 and IFN-gamma. However, THC treatment was shown to suppress the expression of IL-12 receptor beta 2 mRNA, indicating that, in addition to suppression of IL-12, THC injection suppressed the expression of IL-12 receptors. Finally, the role of cannabinoid receptors in Th1-promoting cytokine suppression was examined, and results with receptor antagonists showed that both cannabinoid receptors 1 and 2 were involved. It is suggested that suppression of Th1 immunity to Legionella is not due to an increase in IL-4 production but to a decrease in IFN-gamma and IL-12. Furthermore, both types of cannabinoid receptors are involved.  相似文献   

11.
It has been recently shown that cannabinoids may regulate the growth of many cell types. In the present work we examined the effect of the anandamide analogue (R)-methanandamide (MET) on androgen-dependent prostate LNCaP cell growth. We found that 0.1 microM MET had a mitogenic effect measured by [(3)H]thymidine incorporation into DNA. The effect exerted by MET was blocked by the cannabinoid receptor antagonists SR141716 (SR1) and SR144528 (SR2) as well as by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, suggesting an involvement of cannabinoid receptors and the PI3K pathway in the mechanism of MET action. MET treatment of LNCaP cells also induced an up-regulation of androgen receptor expression that was blocked by the two cannabinoid receptor antagonists SR1 and SR2. These results show for the first time that cannabinoids may modify androgen receptor expression in an androgen-dependent cell line and by this mechanism could regulate prostate cell growth.  相似文献   

12.
Abstract

Context: Previous studies have indicated a role for beta-arrestin2 in the regulation of brain cannabinoid effects and cannabinoid CB1 receptors, but whether beta-arrestin1 has a role has not been investigated. Objective: To determine the role of beta-arrestin1 in cannabinoid activity. Materials and methods: Beta-arrestin1 ?/? mice and their wild-type (+/+) counterparts were assayed for antinociceptive and temperature-decreasing effects of two ligands, Δ9-tetrahydrocannabinol (THC) and CP55940, after both single and repeated administration. In vitro assays examined the effects of deletion on CB1 receptor density, agonist-binding and G-protein activation. Results: Deletion of beta-arrestin1 diminished the effects of CP55940 in both antinociception (latency to tail withdrawal) and temperature-depression assays in mice. However, deleting beta-arrestin1 had no effect on the actions of THC in either assay. Antagonist radioligand ([3H]SR141716A) saturation binding indicated no difference between beta-arrestin1 +/+ and ?/? mice in the density or affinity for cannabinoid CB1 receptors in brain membranes. CP55940 agonist binding in brain membranes from beta-arrestin1 +/+ mice exhibited high- and intermediate-affinity sites, but beta-arrestin1 ?/? membranes exhibited an additional site with low affinity. CP55940 produced greater stimulation of [35S]GTPγS binding to membranes from whole brain of beta-arrestin1 ?/? than +/+ mice. The rates of the development of tolerance to chronic THC or CP55940 administration did not appear to be affected by genotype. Discussion: Beta-arrestin1 appeared to mediate the actions of CP55940, but did not affect the activity of THC. Conclusion: Beta-arrestin1 regulates cannabinoid CB1 receptor sensitivity in an agonist-selective manner, but may not be the primary mediator of tolerance to cannabinoid agonists.  相似文献   

13.
Martin BR 《Life sciences》2005,77(14):1543-1558
Cannabinoid agonists such as Delta9-tetrahydrocannabinol (THC) produce a wide range of pharmacological effects both in the central nervous system and in the periphery. One of the most striking features of cannabinoids such as THC is the magnitude to tolerance that can be produced upon repetitive administration of this substance to animals. Relatively modest dosing regimens are capable of producing significant tolerance, whereas greater than 100-fold tolerance can be obtained with aggressive treatments. While cannabinoid tolerance has been studied quite extensively to establish its relevance to the health consequences of marijuana use, it has also proven to be a valuable strategy in understanding the mechanism of action of cannabinoids. The discovery of the endocannabinoid system that contains two receptor subtypes, CB1 and CB2, associated signaling pathways, endocannabinoids (anandamide and 2-arachidonoylglycerol) and their synthetic and degradative pathways has provided a means of systematically evaluating the mechanism of cannabinoid tolerance. It is well known that the CB1 cannabinoid receptor is down-regulated in states of cannabinoid tolerance along with uncoupling from its second messenger systems. Endocannabinoid levels are also altered in selected brain regions during the development of tolerance. While it is reasonable to speculate that a likely relationship exists between receptor and endocannabinoid levels, at present, little is known regarding the biological signal that leads to alterations in endocannabinoid levels. It is also unknown to what degree synthetic and degradative pathways for the endocannabinoids are altered in states of tolerance. The discovery that the brain is abundant in fatty acid amides and glycerols raises the question as to what roles these lipids contribute to the endocannabinoid system. Some of these lipids also utilize the endocannabinoid metabolic pathways, produce similar pharmacological effects, and are capable of modulating the actions of anandamide and 2-arachidonoylglycerol. In addition, there are dopamine, glycine, and serotonin conjugates of arachidonic acid that may also contribute to the actions of endocannabinoids. A systematic examination of these lipids in cannabinoid tolerance might shed light on their physiological relevance to the endocannabinoid system.  相似文献   

14.
The cannabinoid system and cytokine network   总被引:5,自引:0,他引:5  
Many advances have been made in the last few years concerning our understanding of the receptors and ligands composing the cannabinoid system. Likewise, the science surrounding cytokine biology has advanced enabling us to measure these proteins more precisely as well as understand and interpret the meaning of changes in their levels. Scientists wishing to study the health consequences of smoking marijuana as well as understand the possible role of endogenous cannabimimetic ligands in immune regulation have continued to study the influence of these substances on the regulation and development of the cytokine network. Research has shown that two major cannabinoid receptor subtypes exist and that subtype 1 (CB1) is expressed primarily in the brain whereas subtype 2 (CB2) is expressed primarily in the periphery. A variety of ligands for these receptors based on the cannabinoid structure have been synthesized and studied as well as low affinity compounds, noncannabinoid ligands, and endogenous ligands derived from fatty acid eicosanoids. Highly selective receptor antagonists have also been introduced and studied. Synthetic, low affinity ligands such as (+)-HU-211 and DMH-11C have been shown to cause anti-inflammatory effects possibly through inhibiting the production and action of TNF-alpha and other acute phase cytokines. In addition, suppression of TNF and other cytokines such as GM-CSF, IL-6, IFNgamma, and IL-12 has also been seen following exposure to high affinity and psychoactive ligands such as marijuana and THC. However, some of these ligands have also been shown to increase rather than decrease interleukins such as IL-1, IL-4, IL-10, and IL-6, cytokines such as TNF-alpha, and chemokines such as IL-8, MIP-1, and RANTES. The endogenous ligand, anandamide, has been shown in culture to either suppress the proliferation response to prolactin or enhance the response to cytokines such as IL-3 and IL-6. This eicosanoid has also been shown to increase the production of interleukins and other cytokines. Cannabinoid receptors have been shown to be involved in some but not all of these effects. It is clear that psychoactive and nonpsychoactive compounds have demonstrated effects in vivo and in vitro on the production and function of a variety of cytokines. Depending upon the model system, these effects are often conflicting, and the involvement of cannabinoid receptors is unclear. However, enough evidence exists to suggest that the cannabinoid system significantly impacts the functioning of the cytokine network, and this association may provide clues to the mechanisms of certain immune diseases and form the basis for new immunotherapies.  相似文献   

15.
SR141716A, a potent and selective antagonist of the brain cannabinoid receptor   总被引:30,自引:0,他引:30  
SR141716A is the first selective and orally active antagonist of the brain cannabinoid receptor. This compound displays nanomolar affinity for the central cannabinoid receptor but is not active on the peripheral cannabinoid receptor. In vitro, SR141716A antagonises the inhibitory effects of cannabinoid receptor agonists on both mouse vas deferens contractions and adenylyl cyclase activity in rat brain membranes. After intraperitoneal or oral administration SR141716A antagonises classical pharmacological and behavioural effects of cannabinoid receptor agonists. This compound should prove to be a powerful tool for investigating the in vivo functions of the anandamide/cannabinoid system.  相似文献   

16.
《Life sciences》1996,58(6):PL103-PL110
The effects of the central (CB1) cannabinoid receptor antagonist SR 141716A on the sleep-waking cycle were investigated in freely-moving rats using time scoring and power spectral analysis of the electroencephalogram (EEG). Over a 4-hour recording period, SR 141716A (0.1, 0.3, 1, 3 and 10 mg/kg I.P.) dose-dependently increased the time spent in wakefulness at the expense of slow-wave sleep (SWS) and rapid eye movement sleep (REMS), delayed the occurrence of REMS but did not change the mean duration of REMS episodes. Moreover, the compound induced no change in motor behavior. At the efficient dose of 3 mg/kg I.P., SR 141716A reduced the spectral power of the EEG signals typical of SWS but did not affect those of wakefulness. Taken together, these results demonstrate that the EEG effects of SR 141716A reflect arousal-enhancing properties. In addition, the present study suggests that an endogenous cannabinoid-like system is involved in the control of the sleep-waking cycle.  相似文献   

17.
Abstract: Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as Δ9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (ΔCa2+NMDA) in rat brain slices. The presence of anandamide reduced ΔCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting ΔCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences ΔCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated ΔCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.  相似文献   

18.
The objectives of study were (a) to determine alteration of feeding, glucose level and oxidative stress and (b) to investigate expression and localization of cannabinoid receptors in type‐2 diabetic rat pancreas treated with Δ9‐tetrahydrocannabinol (Δ9‐THC). Rats were randomly divided into four groups: control, Δ9‐THC, diabetes and diabetes + Δ9‐THC groups. Diabetic rats were treated with a single dose of nicotinamide (85 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Δ9‐THC was administered intraperitoneally at 3 mg/kg/day for 7 days. Body weights and blood glucose level of rats in all groups were measured on days 0, 7, 14 and 21. On day 15 after the Δ9‐THC injections, pancreatic tissues were removed. Blood glucose levels and body weights of diabetic rats treated with Δ9‐THC did not show statistically significant changes when compared with the diabetic animals on days 7, 14 and 21. Treatment with Δ9‐THC significantly increased pancreas glutathione levels, enzyme activities of superoxide dismutase and catalase in diabetes compared with non‐treatment diabetes group. The cannabinoid 1 receptor was found in islets, whereas the cannabinoid 2 receptor was found in pancreatic ducts. Their localization in cells was both nuclear and cytoplasmic. We can suggest that Δ9‐THC may be an important agent for the treatment of oxidative damages induced by diabetes. However, it must be supported with anti‐hyperglycaemic agents. Furthermore, the present study for the first time emphasizes that Δ9‐THC may improve pancreatic cells via cannabinoid receptors in diabetes. The aim of present study was to elucidate the effects of Δ9‐THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type‐2 diabetic rat pancreas. Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions. The curative effects of Δ9‐THC can be occurred via activation of cannabinoid receptors in diabetic rat pancreas. Moreover, it may provide a protective effect against oxidative damage induced by diabetes. Thus, it is suggested that Δ9‐THC can be a candidate for therapeutic alternatives of diabetes symptoms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this review we discuss data showing that the endogenous cannabinoid system, represented by cannabinoid receptors, endogenous cannabinoid receptor ligands and enzymes for the biosynthesis and degradation of these ligands, is conserved throughout evolution from coelenterates to man. This signaling system has been suggested to play several roles in animals, including the regulation of cell development and growth, nervous functions, reproduction and feeding behavior. In this article, however, we shall describe with more detail the possible function of the endogenous cannabinoid system in the modulation of immune response in organisms from the lower to the higher levels of animal evolution.  相似文献   

20.
Anandamide (AEA) is an endogenous cannabinoid ligand acting predominantly on the cannabinoid 1 (CB(1)) receptor, but it is also an agonist on the capsaicin VR(1)/TRPV(1) receptor. In the present study we examined the effects of AEA and the naturally occurring cannabinoid 2 (CB(2)) receptor agonist palmitylethanolamide (PEA) on basal and resiniferatoxin (RTX)-induced release of calcitonin gene-related peptide (CGRP) and somatostatin in vivo. Since these sensory neuropeptides play important role in the development of neuropathic hyperalgesia, the effect of AEA and PEA was also examined on mechanonociceptive threshold changes after partial ligation of the sciatic nerve. Neither AEA nor PEA affected basal plasma peptide concentrations, but both of them inhibited RTX-induced release. The inhibitory effect of AEA was prevented by the CB(1) receptor antagonist SR141716A. AEA abolished and PEA significantly decreased neuropathic mechanical hyperalgesia 7 days after unilateral sciatic nerve ligation, which was antagonized by SR141716A and the CB(2) receptor antagonist SR144528, respectively. Both SR141716A and SR144528 increased hyperalgesia, indicating that endogenous cannabinoids acting on CB(1) and peripheral CB(2)-like receptors play substantial role in neuropathic conditions to diminish hyperalgesia. AEA and PEA exert inhibitory effect on mechanonociceptive hyperalgesia and sensory neuropeptide release in vivo suggesting their potential therapeutical use to treat chronic neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号