首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The Escherichia coli D-alanyl-D-alanine-adding enzyme, which catalyzes the final cytoplasmic step in the biosynthesis of the bacterial peptidoglycan precursor UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelyl-D-Ala-D- Ala, has been purified to homogeneity from an E. coli strain that harbors a recombinant plasmid bearing the structural gene for this enzyme, murF. The enzyme is a monomer of molecular weight 49,000, and it has a turnover number of 784 min-1 for ATP-driven amide bond formation. Experiments monitoring the fate of radiolabeled UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-2,6-diaminopimelate and D-trifluoroalanine proved that the preceding enzyme in the D-alanine branch pathway, D-alanine:D-alanine ligase (ADP), is capable of synthesizing fluorinated dipeptides, which the D-Ala-D-Ala-adding enzyme can then incorporate to form UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-2,6-diaminopimelyl-D-++ +trifluoroAla-D- trifluoroAla.  相似文献   

2.
Previous studies have shown that human TS mRNA translation is controlled by a negative autoregulatory mechanism. In this study, an RNA electrophoretic gel mobility shift assay confirmed a direct interaction between Escherichia coli (E.coli) TS protein and its own E.coli TS mRNA. Two cis-acting sequences in the E.coli TS mRNA protein-coding region were identified, with one site corresponding to nucleotides 207-460 and the second site corresponding to nucleotides 461-807. Each of these mRNA sequences bind TS with a relative affinity similar to that of the full-length E.coli TS mRNA sequence (IC50 = 1 nM). A third binding site was identified, corresponding to nucleotides 808-1015, although its relative affinity for TS (IC50 = 5.1 nM) was lower than that of the other two cis-acting elements. E.coli TS proteins with mutations in amino acids located within the nucleotide-binding region retained the ability to bind RNA while proteins with mutations at either the nucleotide active site cysteine (C146S) or at amino acids located within the folate-binding region were unable to bind TS mRNA. These studies suggest that the regions on E.coli TS defined by the folate-binding site and/or critical cysteine sulfhydryl groups may represent important RNA binding domains. Further evidence is presented which demonstrates that the direct interaction with TS results in in vitro repression of E.coli TS mRNA translation.  相似文献   

3.
A putatively rate-limiting synthase (expandase) of Streptomyces clavuligerus was stabilized in vitro and purified 46-fold from cell-free extracts; a major enriched protein with a Mr of 35,000 was further purified by electrophoretic elution. Based on a 22-residue amino-terminal sequence of the protein, the synthase gene of S. clavuligerus was cloned and expressed in Escherichia coli (Kovacevic, S., Weigel, B.J., Tobin, M.B., Ingolia, T.D., and Miller, J. R. (1989) J. Bacteriol. 171, 754-760). The synthase protein was detected mainly from granules of recombinant E. coli. The recombinant synthase was solubilized from the granules by urea, and for the first time a highly active synthase was purified to near homogeneity. The synthase was a monomer with a Mr of 34,600 and exhibited two isoelectric points of 6.1 and 5.3. Its catalytic activity required alpha-ketoglutarate, Fe2+, and O2, was stimulated by dithiothreitol or ascorbate but not by ATP, and was optimal at pH 7.0 in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer and at 36 degrees C. The Fe2+ requirement was specific, and at least one sulfhydryl group in the purified enzyme was apparently essential for the ring expansion. The Km values of the enzyme for penicillin N and alpha-ketoglutarate were 29 and 18 microM, respectively, and the Ka for Fe2+ was 8 microM. The recombinant synthase was indistinguishable from the native synthase of S. clavuligerus by those biochemical properties. In addition to the enzymic ring expansion of penicillin N to deacetoxycephalosporin C, the recombinant synthase catalyzed a novel hydroxylation of 3-exomethylenecephalosporin C to deacetylcephalosporin C.  相似文献   

4.
E Holmes  C Boyer    J Preiss 《Journal of bacteriology》1982,151(3):1444-1453
Escherichia coli B glycogen synthase and branching enzyme, although similar in amino acid composition, had no significant immunological cross-reactivity. The N-terminal sequences of the glycogen synthase were rich in hydrophobic residues, whereas branching enzyme had a higher content of acidic and basic residues. However, residues 21 to 28 of glycogen synthase and 7 to 14 of branching enzyme shared six of eight residues in common. Two fractions of branching enzyme, branching enzymes I and II, which can be isolated from E. coli B cell extracts, have been shown to be immunologically identical, suggesting that only one type of branching enzyme activity is present in E. coli B. Evidence has been obtained which indicates that E. coli B glycogen synthase and branching enzyme are antigenically very similar to glycogen synthases and branching enzymes from other enteric bacteria. No cross-reactivity with either enzyme was observed in cell extracts from photosynthetic bacteria.  相似文献   

5.
Recombinant mouse thymidylate synthase (TS) expressed at high levels in Escherichia coli was purified to homogeneity in greater than 70% yield by a rapid three-step procedure. Both 0.1% Triton X-100 and 10% glycerol were required to stabilize the enzyme whose activity remained unchanged after 1 month when stored at -20 degrees C. Thermal inactivation of the enzyme was a first-order process at 37 degrees C, with t1/2 values of 6.9, 15.6 and 3.0 min at pH 5.5, 7.0 and 8.5, respectively. The presence of saturating levels of dUMP at pH 8.5 increased the t1/2 of inactivation of 38 min. The pH profile for enzyme activity showed a narrow optimum region centered at pH 7.0, which was mirrored by the shape of the Km, dUMP/Vmax plot. The pH dependence of Kd for the covalent inhibitory ternary complex of enzyme, 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate exhibited a broad minimum between pH 5.5 and 8.5, and ranged between 3.1, 0.8 and 1.1 nM at pH 5.5, 7.0 and 8.5, respectively. The UV/VIS spectrum of the native enzyme exhibited a maximum at 280 nm (epsilon = 98,200 M-1 cm-1), while that of the inhibitory ternary complex showed an additional maximum at 320 nm. The 19F-NMR spectrum of the mouse enzyme:FdUMP binary complex revealed two new resonances at -2.8 and -34.8 ppm. The most deshielded resonance represented the noncovalent binary complex while the other resonance was assigned to the nucleotide covalently bound to the enzyme. The alteration of nucleotide binding equilibria produced by addition of H4 folate was exemplified by both an increase in intensity and a 5 ppm deshielding of the resonance attributed to the covalent FdUMP-enzyme complex. Addition of formaldehyde to the latter mixture produced the covalent ternary complex which resulted in the collapse of the resonances at -2.8 and -39.5 ppm and the appearance of a new resonance at -12.4 ppm.  相似文献   

6.
Expression of human thymidylate synthase in Escherichia coli   总被引:4,自引:0,他引:4  
A cDNA clone encoding thymidylate synthase (TS) has been isolated from a human T-cell library and modified in the 5'-untranslated region to incorporate several unique cloning sites. The gene has been cloned as a cassette into several Escherichia coli expression vectors which did not provide detectable amounts of the enzyme. A successful approach used a constitutive E. coli expression vector developed for the enzyme from Lactobacillus casei. A 115-base pair 5'-untranslated region from the L. casei TS which contains a ribosomal binding site and other regulatory sequences has been fused to the coding region of the human TS gene to provide a construct that is expressed in E. coli. The level of expression was further enhanced by altering the nucleotide sequence of the first 90 base pairs to accommodate common codon use in E. coli. In our best expression system, catalytically active human TS is expressed to a level that represents about 1.6% of the total soluble protein. The recombinant human TS has been purified and characterized; except for the presence of an amino-terminal blocking group, the enzyme has physical and kinetic properties similar to the enzyme isolated from human cells.  相似文献   

7.
A new type of ribopolynucleotide-synthesizing enzyme was found both on cytoplasmic membranes and in protein-DNA complexes isolated from Escherichia coli. The enzyme was purified by exploiting a specific, reversible enzyme aggregation with ATP and spermidine. The purified enzyme (more than 90% pure) was free from other enzymatic activities such as ATPase and polynucleotide phosphorylase. The enzyme (molecular weight 270,000 ± 15%) contains two kinds of polypeptide chain (molecular weights 91,000 ± 10%, and 45,000 ± 10%) and these polypeptides are not common with those of DNA-dependent RNA polymerase. The enzyme catalyses the synthesis of ribopolynucleotides from nucleoside triphosphates in the presence of 1 mm-MgCl2. Rifampicin and streptolydigin do not affect the enzyme reaction.  相似文献   

8.
Efficient synthesis of mouse thymidylate synthase in Escherichia coli   总被引:1,自引:0,他引:1  
The coding region of the mouse thymidylate synthase (TS)-encoding cDNA (ts) was inserted downstream from the phage T7 promoter and translation initiation signals of the expression vector, pET-3a, and transformed into Escherichia coli BL21(DE3)[pLysS]. When the wild-type (wt) cDNA sequence was used, mouse TS was synthesized in the bacterial cells in response to induction, but the level of expression was low. When the second codon (Leu) was changed from CUG, found in the normal mRNA, to CUU, the level of expression increased 17-fold and TS represented 5-10% of total cell protein. The recombinant enzyme was purified to homogeneity by affinity chromatography. The recombinant TS had the same Mr as the enzyme from cultured mouse fibroblasts. Kinetic studies with the recombinant enzyme showed that the apparent Km values for deoxyuridylate and 5,10-methylenetetrahydrofolate were 10.5 and 22 microM, respectively, which were similar to the values for TS from mouse cell extracts. The mouse ts expression vector will be useful for the large-scale production of the wt enzyme and for the creation and analysis of mutant enzymes by protein engineering techniques.  相似文献   

9.
Catalytically active Pneumocystis carinii thymidylate synthase is expressed to the extent of about 4% of the soluble protein in Escherichia coli chi 2913 harboring plasmid pUETS-1.8 (U. Edman, J. C. Edman, B. Lundgren, and D. V. Santi, Proc. Natl. Acad. Sci. USA 86, 6503-6507, 1989). Ion-exchange, affinity, hydrophobic, and reactive dye agarose chromatography steps were explored to devise a large-scale purification protocol for P. carinii thymidylate synthase. Sequential DE52, Q-Sepharose, phenyl-Sepharose, and Cibacron Blue F3GA chromatography yielded enzyme that was homogeneous by SDS-PAGE in a yield of over 50%. The sequence of the first 10 amino acid residues of the purified protein was in accord with that predicted from the DNA sequence. Isoelectric focusing gave a pI of 6.2. Kinetic analysis of the purified enzyme revealed that the Km values were 4.7 +/- 1.3 microM for dUMP and 15.7 +/- 4.3 microM for 5,10-methylenetetrahydrofolate, similar to those of many other thymidylate synthases; the kcat of the most active preparation was 0.8 s-1. The enzyme is stable for at least 2 months when stored at -80 degrees C in the presence of 40% glycerol, Tris-HCl, and thiol.  相似文献   

10.
The side-chain asymmetry of physiological porphyrins is produced by the cooperative action of hydroxymethylbilane synthase and uroporphyrinogen (uro'gen) III synthase. Although the role of uro'gen III synthase is essential for the chemistry of porphyrin biosynthesis, many aspects, structural as well as mechanical, of uro'gen III synthase have yet to be studied. We report here an expression system in Escherichia coli and a purification procedure for human uro'gen III synthase. The enzyme in the lysate was unstable, but we found that glycerol prevents the activity loss in the lysate. The purified enzyme showed remarkable thermostability, particularly when kept in phosphate buffer containing DTT or EDTA, indicating that the enzyme activity may depend on its oxidation state. Examination of the relationship between the number of Cys residues that are accessible to 5,5'-dithiobis(2-nitrobenzoic acid) and the remaining activity during heat inactivation showed that a particular Cys residue is involved in activity loss. From the crystal structure of human uro'gen III synthase [Mathews et al. (2001) EMBO J. 20, 5832-5839], this Cys residue was considered to be Cys73, which is buried deep inside the enzyme, suggesting that Cys73 of human uro'gen III synthase plays an important role in enzyme activity.  相似文献   

11.
Dihydroorotase from Escherichia coli. Purification and characterization   总被引:4,自引:0,他引:4  
Dihydroorotase (4,5-L-dihydroorotate amidohydrolase (EC 3.5.2.3], which catalyzes the reversible cyclization of N-carbamyl-L-aspartate to dihydro-L-orotate, has been purified to homogeneity from an over-producing strain of Escherichia coli. Treatment of 70 g of frozen cell paste produces about 7 mg of pure enzyme, a yield of about 35%. The native molecular weight, determined by equilibrium sedimentation, is 80,900 +/- 4,300. The subunit molecular weight, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 38,400 +/- 2,600, and by amino acid analysis is 41,000. The enzyme is thus a dimer and contains 0.95 +/- 0.08 tightly bound zinc atoms per subunit when isolated by the described procedure, which would remove any loosely bound metal ions. Isoelectric focusing under native conditions yields a major species at isoelectric point 4.97 +/- 0.27 and a minor species at 5.26 +/- 0.27; dihydroorotase activity is proportionately associated with both bands. The enzyme has a partial specific volume of 0.737 ml/g calculated from the amino acid composition and a specific absorption at 278 nm of 0.638 for a 1 mg/ml solution. At 30 degrees C, the Michaelis constant and kcat for dihydro-DL-orotate (at pH 8.0) are 0.0756 mM and 127 s-1, respectively; for N-carbamyl-DL-aspartate (at pH 5.80), they are 1.07 mM and 195 s-1.  相似文献   

12.
13.
Genetic system for analyzing Escherichia coli thymidylate synthase.   总被引:7,自引:2,他引:5       下载免费PDF全文
Random in vitro mutagenesis of the thyA gene is being used to delineate its regulatory elements as well as the functional domains of its product, thymidylate synthase (EC 2.1.1.45). Streamlined procedures have been developed for the isolation and characterization of the mutants. Positive selection for synthase-deficient thyA Escherichia coli permitted the isolation of 400 mutants, which are being categorized by phenotypic and genetic criteria. An in situ 5-fluorodeoxyuridylate binding assay was devised to rapidly probe the substrate binding domain, whereas facile mapping procedures, based on pBR322- or M13-borne thyA deletion derivatives, were developed to localize mutations. The sequence changes of one amber mutation and another mutation that abolishes catalysis while maintaining substrate binding activity are presented. The orientation of the thyA gene on the E. coli chromosome was established.  相似文献   

14.
Bacterial beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called FabH) catalyzes the condensation and transacylation of acetyl-CoA with malonyl-ACP. In order to understand the mode of enzyme/substrate interaction and design small molecule inhibitors, we have expressed, purified, and crystallized a selenomethionyl-derivative of E. coli KAS III. Several lines of evidence confirmed that purified selenomethionyl KAS III was homogenous, stably folded, and enzymatically active. Dynamic light scattering, size exclusion chromatography, and mass spectrometry results indicated that selenomethionyl KAS III is a noncovalent homodimer. Diffraction quality crystals of selenomethionyl KAS III/acetyl-CoA complex, which grew overnight to a size of 0.2 mm(3), belonged to the tetragonal space group P4(1)2(1)2.  相似文献   

15.
Properties of a defined mutant of Escherichia coli thymidylate synthase   总被引:3,自引:0,他引:3  
A mutant of Escherichia coli thymidylate synthase (F3-TS), resulting from the replacement of a tyrosine for a cysteine 50 amino acids from the amino-terminal end, has been purified to homogeneity and found to contain less than 0.2% of the activity of the native enzyme (thyA-TS). Although this protein formed a ternary complex with 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and 5,10-methylenetetrahydrofolate, like the native enzyme, the extent of complex formation was significantly impaired as determined by equilibrium dialysis and circular dichroism. Thus, unlike the native enzyme, where 2 mol of FdUMP were present in each mole of ternary complex, F3-TS contained less than 1 mol of FdUMP/mol of ternary complex. Similarly, the binding of dUMP by F3-TS was greatly diminished relative to thyA-TS, but its binding as well as that of FdUMP could be improved by the presence of either the folate substrate or a tight binding folate analogue, 10-propargyl-5,8-dideazafolate (PDDF). However, despite the fact that PDDF enhanced the binding of FdUMP and dUMP to F3-TS, the binding of PDDF to the mutant enzyme was also greatly impaired. This contrasts with the native enzyme, which, under the same conditions, bound about 2 mol of PDDF/mol of enzyme in the presence or absence of either FdUMP or dUMP. Circular dichroism analyses with PDDF in the presence of dUMP or FdUMP yielded analogous results, but the effects were less dramatic than those obtained by equilibrium dialysis. Evidence in support of a structural difference between thyA-TS and F3-TS was obtained by demonstrating that the latter protein was 15-fold slower in forming a ternary complex with dUMP and PDDF than the former and that the mutant enzyme was less stable than the native enzyme.  相似文献   

16.
Tetrahydrodipicolinate succinylase, an enzyme involved in the diaminopimelate-lysine pathway, was purified 1900-fold from crude extracts of Escherichia coli. The enzyme catalyzes the formation of CoA and N-succinyl-2-amino-6-keto-L-pimelate from succinyl-CoA and tetrahydrodipicolinate. The purified enzyme was shown to be homogeneous by polyacrylamide gel electrophoresis. The Stokes radius of the enzyme was determined from its elution volume on a Sephacryl S300 column and its sedimentation constant from sucrose density gradient centrifugation. These were 35 A and 4.7 (S20,w), respectively. The enzyme consists of two subunits each with a mass of 31,000 daltons, as determined using sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Tetrahydrodipicolinate succinylase was shown to be a sulfhydryl enzyme. It has a pH optimum of 8.2. The equilibrium lies predominantly in favor of product formation but the reverse reaction can be demonstrated in vitro.  相似文献   

17.
Catalytic role of histidine 147 in Escherichia coli thymidylate synthase   总被引:3,自引:0,他引:3  
Nine mutant thymidylate synthases were isolated that only differed in sequence at position 147. The wild-type enzyme (which had a histidine residue at 147) and mutant enzymes were purified to near homogeneity and their kinetic properties were compared. Although the kcat values for the mutant enzymes were 10-10,000-fold lower than for the wild-type enzyme, the Km values for both 2'-deoxyuridylate and 5,10-methylenetetrahydrofolate were nearly identical for all the enzymes indicating that His-147 is not significantly involved in initial substrate binding. By comparing the wild-type (His-147) to the glycine (Gly-147) enzyme, the side chain of His-147 was estimated to lower the activation energy of the catalytic step by 1.6-2.9 kcal mol-1. In contrast to the wild-type enzyme, the activity of the Gly-147 enzyme decreased when the pH was raised above 7.5. The activity loss coincided with the deprotonation of a residue that had a pKa of 9.46 +/- 0.2 and an enthalpy of ionization (delta Hion) of 12.1 +/- 0.9. These values are consistent with the involvement of a lysine or an arginine residue in the catalytic process. An inspection of the rates of ternary complex formation among enzyme, 5-fluoro-2'-deoxyuridylate, and 5,10-methylenetetrahydrofolate for the mutant enzymes indicated that His-147 is not needed for the proton removal from C-5 of 2'-deoxyuridylate but rather participates in an initial catalytic step and alters the pKa value of a catalytically important lysine or arginine residue.  相似文献   

18.
19.
Gatalytically active Pneumocystis carinii thymidylate synthase is expressed to the extent of about 4% of the soluble protein in Escherichia coli χ2913 harboring plasmid pUETS-1.8 (U. Edman, J. C. Edman, B. Lundgren, and D. V. Santi, Proc. Natl. Acad. Sci. USA 86, 6503–6507, 1989). Ion-exchange, affinity, hydrophobic, and reactive dye agarose chromatography steps were explored to devise a large-scale purification protocol for P. carinii thymidylate synthase. Sequential DE52, Q-Sepharose, phenyl-Sepharose, and Cibacron Blue F3GA chromatography yielded enzyme that was homogeneous by SDS-PAGE in a yield of over 50%. The sequence of the first 10 amino acid residues of the purified protein was in accord with that predicted from the DNA sequence. Isoelectric focusing gave a pI of 6.2. Kinetic analysis of the purified enzyme revealed that the the Km values were 4.7 ± 1.3 μM for dUMP and 15.7 ± 4.3 μM for 5,10-methylenetetrahydrofolate, similar to those of many other thymidylate synthases; the κcat of the most active preparation was 0.8 s−1. The enzyme is stable for at least 2 months when stored at −80°C in the presence of 40% glycerol, Tris-HCl, and thiol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号