首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical map of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome has been constructed with restriction endonucleases PmeI, SwaI, and an intron-encoded endonuclease I-CeuI. The estimated size of the genome is 2.7 Mb. On the genome 49 genes or operons have been mapped. Two rRNA operons are separated by 600 kb and transcribed oppositely.  相似文献   

2.
Previous attempts to isolate auxotrophic mutants of Anacystis nidulans produced only a limited range of phenotypes. The frequency of recovery of auxotrophic mutants has been quantified following different mutagenic and selective treatments, and their yield has been improved by using (1) a complete medium, (2) additional mutagens, (3) multiple cycles of penicillin enrichment and (4) altered pre-enrichment starvation conditions. These modified induction and selection conditions permitted the isolation of mutants defective in nitrate reductase, nitrite reductase or malate dehydrogenase, unable to reduce sulphate, or deficient in the synthesis of biotin, thiamine, paminobenzoate, serine, glutamate, adenine or uracil.  相似文献   

3.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

4.
The glucose-6-phosphate dehydrogenase (EC 1.1.1.49) gene (zwf) of the cyanobacterium Synechococcus PCC 7942 was cloned on a 2.8 kb Hind III fragment. Sequence analysis revealed an ORF of 1572 nucleotides encoding a polypeptide of 524 amino acids which exhibited 41% identity with the glucose-6-phosphate dehydrogenase of Escherichia coli.  相似文献   

5.
Glutamine synthetase (GS; EC 6.3.1.2) activity from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 shows a short-term regulation by light-dark transitions. The enzyme activity declines down to 30% of the original level after 2 h of dark incubation, and can be fully reactivated within 15 min of re-illumination. The loss of activity is not due to protein degradation, but rather to a reversible change of the enzyme, as deduced from the GS-protein levels determined in dark-incubated cells using polyclonal antibodies raised against Synechococcus GS. Incubation with 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU) also provokes GS inactivation, indicating that an active electron flow between both photosystems is necessary to maintain GS in an active state. On the other hand, the light-mediated reactivation of GS in dark-incubated cells treated with dicyclohexyl-carbodiimide (DCCD) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) indicates that neither changes in the ATP synthesis nor the lack of an electrochemical proton gradient across the thylakoid membrane are directly involved in the regulation process. The inactive form of GS is extremely labile in vitro after disruption of the cells, and is not reactivated by treatment with dithiothreitol or spinach thioredoxin m. These results, taken together with the fact that dark-promoted GS inactivation is dependent on the growth phase, seem to indicate that GS activity is not regulated by a typical redox process and that some other metabolic signal(s), probably related to the ammonium-assimilation pathway, might be involved in the regulation process. In this regard, our results indicate that glutamine is not a regulatory metabolite of Synechococcus glutamine synthetase.Abbreviations CAP chloramphenicol - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - GOGAT glutamate synthase - GS glutamine synthetase - PFD photon flux density This work has been financed by the Directión General de Investigación Científica y Técnica, (Grant PB88-0020) and by the Junta de Andalucía, Spain.  相似文献   

6.
The transformation of the fresh water cyanobacterium Synechococcus PCC7942 with the shuttle-vector pAQ-EX1 developed for the marine cyanobacterium S. PCC7002 was examined. The S. PCC7942 cells were successfully transformed with the pAQ-EX1 vector, and the vector was stably maintained in the transformant cells.  相似文献   

7.
The glutamate dehydrogenase (gdh) gene of Escherichia coli was transferred into an ammonium assimilation deficient mutant (Asm-) of Rhizobium japonicum (CJ9) using plasmid pRP301, a broad host range derivative of RP4. Exconjugants capable of growth on ammonia as sole N-source occurred at a frequency of 6.8×10-6. Assimilatory GDH (NADP+) activity was detected in the strain carrying the E. coli gdh gene and the pattern of ammonia assimilation via GDH was similar to that of the Asm+ wild type strain. However, GDH mediated ammonia assimilation was not subject to regulation by l-glutamate. Nitrogenase activity was expressed ex planta in R. japonicum CJ9 harbouring the gdh gene, however, the presence of the gdh gene did not restore symbiotic effectiveness to the CJ9 Asm- strain in nodules. The gdh plasmid was maintained in approximately 90% of the isolates recovered from soybean nodules.Abbreviations gdh glutamate dehydrogenase - Asm- mutant ammonia assimilation deficient mutant  相似文献   

8.
9.
Synechococcus sp. strains PCC 7942 and PCC 6301 contain a 35 kDa protein called IdiA (Iron deficiency induced protein A) that is expressed in elevated amounts under Fe deficiency and to a smaller extent also under Mn deficiency. Absence of this protein was shown to mainly damage Photosystem II. To decide whether IdiA has a function in optimizing and/or protecting preferentially either the donor or acceptor side reaction of Photosystem II, a comparative analysis was performed of Synechococcus sp. PCC 7942 wild-type, the IdiA-free mutant, the previously constructed PsbO-free Synechococcus PCC 7942 mutant and a newly constructed Synechococcus PCC 7942 double mutant lacking both PsbO and IdiA. Measurements of the chlorophyll fluorescence and determinations of Photosystem II activity using a variety of electron acceptors gave evidence that IdiA has its main function in protecting the acceptor side of Photosystem II. Especially, the use of dichlorobenzoquinone, preferentially accepting electrons from QA, gave a decreased O2 evolving activity in the IdiA-free mutant. Investigations of the influence of hydrogen peroxide treatment on cells revealed that this treatment caused a significantly higher damage of Photosystem II in the IdiA-free mutant than in wild-type. These results suggest that although the IdiA protein is not absolutely required for Photosystem II activity in Synechococcus PCC 7942, it does play an important role in protecting the acceptor side against oxidative damage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The gene encoding nitrite reductase (nir) from the cyanobacterium Synechococcus sp. PCC 7942 has been identified and sequenced. This gene comprises 1536 nucleotides and would encode a polypeptide of 56506 Da that shows similarity to nitrite reductase from higher plants and to the sulfite reductase hemoprotein from enteric bacteria. Identities found at positions corresponding to those amino acids which in the above-mentioned proteins hold the Fe4S4-siroheme active center suggest that nitrite reductase from Synechococcus bears an active site much alike that present in those reductases. The fact that the Synechococcus and higher-plant nitrite reductases are homologous proteins gives support to the endosymbiont theory for the origin of chloroplasts.  相似文献   

11.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

12.
Two different thioredoxins designated as thioredoxin A and B have been isolated from the cyanobacterium Synechococcus 6301. Methods for large scale purification of these thioredoxins were developed. Thioredoxin B has been purified to homogeneity; it has a molecular weight of 11,800 and an isoelectric point of 4.6. The following K m data were obtained for this thioredoxin; a) in the PAPS-sulfotransferase assay of Synechococcus 6301: 10.7 M; b) in the fructose-1-6-bisphosphatase assay of Synechococcus 6301: 1.7 M; c) in the APS-sulfotransferase assay of Chroococcidiopsis 7203: 5.4M. Thioredoxin A has an isoelectric point of 4.1 and it is active in the PAPS-sulfotransferase and fructose-1-6-bisphosphatase of Synechococcus 6301; it is not active in the APS-sulfotransferase of Chroococcidiopsis 7203.Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

13.
Ahlert Schmidt 《Planta》1981,152(2):101-104
Fructose-1,6-bisphosphatase was isolated from the cyanobacterium Synechococcus 6301 by acid precipitation, ammonium-sulfate fractionation, and Sephadex gel chromatography. The purified enzyme needed thiols and MgCl2 for activity. The following Km-values were obtained: a) for fructose-1,6-bisphosphate: 1.7 mM; b) for MgCl2: 12.5 mM; c) for dithiocrythritol: 0,56 mM; d) for glutathione: 14 mM; e) for mercaptoethanol: 22 mM; f) for cysteine: 50 mM. Thioredoxin B isolated from this organism will activate this fructose-1,6-bisphosphatase. The Km of thioredoxin B for this fructose-1,6-bisphosphatase was determined to be 1.7 M, endicotiy that thioredoxin might activate the fructose-1,6-bisphosphatase in Synechococcus in vivo.  相似文献   

14.
The structural gene encoding a thioredoxin-dependent 5-phosphoadenylyl sulphate (PAPS) reductase (EC 1.8.4.-) from cyanobacterium Synechococcus PCC 7942 (Anacystis nidulans) was detected by heterologous hybridization with the cysH gene from Escherichia coli K12. The cyanobacterial gene (further called par gene) comprised 696 nt which are 57.8% homologous to the enterobacterial gene. The putative open reading frame encoded a polypeptide consisting of 232 amino acid residues (deduced molecular weight 26635) which showed significant homologies to the polypeptide from E. coli (50.8%) and to the polypeptide from Saccharomyces cerevisiae (30.3%). A single cysteine located at the C-terminus of the polypeptide of E. coli (Cys239) was conserved in Synechococcus. Conservation of this cysteinyl residue seems indispensable for catalysis. Complementation of a cysH-deficient mutant of E. coli by the cyanobacterial gene indicated that the cloned DNA is the structural gene of the PAPS reductase.Abbreviations IPTG isopropyl-1-thio--D-galactoside - PAPS 3-phosphoadenosine-5-phosposulphate  相似文献   

15.
In Synechococcus sp. cells AS-1 cyanophage infection gradually inhibits the photosystem II mediated photosynthetic electron flow whereas the activity of photosystem I is apparently unaffected by the cyanophage infection. Transient fluorescence induction and flash-induced delayed luminescence decay studies revealed that the inhibition may occur at the level of the secondary acceptor, QB of photosystem II. In addition, the breakdown of D1-protein is inhibited, comparable to DCMU-induced protection of D1-protein turnover, in AS-1-infected cells.  相似文献   

16.
The psaA and psaB genes, which encode the P700 chlorophyll a apoproteins of the Photosystem I complex, have been cloned from the unicellular, transformable cyanobacterium Synechococcus sp. PCC 7002. The nucleotide sequence of these genes and of their flanking sequences have been determined by the chain termination method. As found in the chloroplast genomes of higher plants, the psaA gene lies 5 to the psaB gene; however, the cyanobacterial genes are separated by a greater distance (173 vs. 25–26 bp). The psaA gene is predicted to encode a polypeptide of 739 amino acid residues (81.7 kDa), and the psaB gene is predicted to encode a polypeptide of 733 residues (81.4 kDa). The cyanobacterial psa gene products are 76% to 81% identical to their higher plant homologues; moreover, because of conservative amino acid replacements, the cyanobacterial sequences are more than 95% homologous to those determined for higher plants. These results provide the basis for a genetic analysis of Photosystem I, and are discussed in relationship to structural and functional aspects of the Photosystem I complexes of both cyanobacteria and higher plants.  相似文献   

17.
In this article we describe the partial characterization of a Synechococcus sp. PCC 7942 mutant Mu1 with an enhanced resistance towards the herbicide bentazone (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one 2,2-dioxide). The mutant was derived from a random mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine (NSG) and exhibited superior growth rates, pigment content and overall photosynthetic activities under regular growth conditions compared to wild type. Whereas Synechococcus PCC 7942 wild type showed significant photoinhibition, especially in the presence of lincomycin, Mu1 was much more robust. A comparative analysis of the content of several photosynthesis-associated proteins revealed that Mu1 had an increased expression of PsbO on mRNA and protein level and that PsbO is tightly bound to Photosystem II, relative to wild type. This result was substantiated by mass spectrometer measurements of photosynthetic water oxidation revealing a higher stability and integrity of the water oxidizing complex in Mu1 cells grown under regular or calcium deficient conditions. Therefore, our results give rise to the possibility that the overexpression of PsbO in mutant Mu1 confers resistance to reactive oxygen species (ROS) formed as a consequence of bentazone binding to the acceptor side of PS II. In addition, we observed a significantly higher tolerance towards bentazone in iron depleted wild type cells, conditions under which the IdiA protein becomes expressed in highly elevated amounts. As we have previously shown, IdiA preferentially protects the acceptor site of PS II against oxidative stress, especially under iron limitation. Thus, it is likely that IdiA due to its topology interferes with bentazone binding or protects PS II against ROS generated in the presence of bentazone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Summary The glutamate dehydrogenase structural gene, gdhA, was mapped at 38.6 min on the genetic map and at 1860 kb on the physical map. A detailed map of this region is presented.  相似文献   

19.
Iron-deficiency-induced protein A (IdiA) with a calculated molecular mass of 35 kDa has previously been shown to be essential under manganese- and iron-limiting conditions in the cyanobacteria Synechococcus PCC 6301 and PCC 7942. Studies of mutants indicated that in the absence of IdiA mainly photosystem II becomes damaged, suggesting that the major function of IdiA is in Mn and not Fe metabolism (Michel et al. 1996, Microbiology 142: 2635–2645). To further elucidate the function of IdiA, the immunocytochemical localization of IdiA in the cell was examined. These investigations provided evidence that under mild Fe deficiency IdiA is intracellularly localized and is mainly associated with the thylakoid membrane in Synechococcus PCC 6301. The protein became distributed throughout the cell under severe Fe limitation when substantial morphological changes had already occurred. For additional verification of a preferential thylakoid membrane association of IdiA, these investigations were extended to the thermophilic Synechococcus elongatus. In this cyanobacterium Mn deficiency could be obtained more rapidly than in the mesophilic Synechococcus PCC 6301 and PCC 7942, and the thylakoid membrane structure proved to be more stable under limiting growth conditions. The immunocytochemical investigations with this cyanobacterium clearly supported a thylakoid membrane association of IdiA. In addition, evidence was obtained for a localization of IdiA on the cytoplasmic side of the thylakoid membrane. All available data support a function of IdiA as an Mn-binding protein that facilitates transport of Mn via the thylakoid membrane into the lumen to provide photosystem II with Mn. A possible explanation for the observation that IdiA was not only expressed under Mn deficiency but also under Fe deficiency is given in the discussion. Received: 28 July 1997 / Accepted: 26 November 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号