首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATP depletion induced by hypoxia or mitochondrial inhibitors results in Bax translocation from cytosol to mitochondria and release of cytochrome c from mitochondria into cytosol in cultured rat proximal tubule cells. Translocated Bax undergoes further conformational changes to oligomerize into high molecular weight complexes (Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. (2001) J. Biol. Chem. 276, 18361-18374). Here we report that following Bax translocation in ATP-depleted rat proximal tubule cells, Bak, a proapoptotic molecule that normally resides in mitochondria, also reorganizes to form homo-oligomers. Oligomerization of both Bax and Bak occurred independently of Bid cleavage and/or translocation. Western blots of chemically cross-linked membrane extracts showed nonoverlapping "ladders" of Bax and Bak complexes in multiples of approximately 21 and approximately 23 kDa, respectively, consistent with molecular homogeneity within each ladder. This indicated that Bax and Bak complexes were homo-oligomeric. Nevertheless, each oligomer could be co-immunoprecipitated with the other, suggesting a degree of affinity between Bax and Bak that permitted co-precipitation but not cross-linking. Furthermore, dissociation of cross-linked complexes by SDS and renaturation prior to immunoprecipitation did not prevent reassociation of the two oligomeric species. Notably, expression of Bcl-2 prevented not only the oligomerization of Bax and Bak, but also the association between these two proteins in energy-deprived cells. Using Bax-deficient HCT116 and BMK cells, we show that there is stringent Bax requirement for Bak homo-oligomerization and for cytochrome c release during energy deprivation. Using Bak-deficient BMK cells we further show that Bak deficiency is associated with delayed kinetics of Bax translocation but does not affect either the oligomerization of translocated Bax or the leakage of cytochrome c. These results suggest a degree of functional cooperation between Bax and Bak in this form of cell injury, but also demonstrate an absolute requirement of Bax for mitochondrial permeabilization.  相似文献   

2.
Induction of cell death in HeLa cells with TNF and cycloheximide (CHX) required an adequate ATP supply and was accompanied by decrease in intracellular pH, translocation of Bax, perinuclear clustering of the mitochondria, and cytochrome c release. The chloride channel inhibitor furosemide prevented the intracellular acidification, the translocation of Bax and the cell death. Cyclosporin A (CyA) or bongkrekic acid (BK) inhibited the induction of the MPT, the release of cytochrome c and the cell death without affecting the perinuclear clustering of the mitochondria or the translocation of Bax. Energy depletion with the ATP synthase inhibitor oligomycin or the uncoupler FCCP in the presence of 2-deoxy-glucose prevented the perinuclear clustering of the mitochondria and the cell killing. However, mitochondrial translocation of Bax was still observed. By contrast, cytochrome c was released in the oligomycin-treated cells but not in the same cells treated with FCCP. The data demonstrate that apoptosis in HeLa cells is ATP dependent and requires the translocation of Bax. The movement of Bax to the mitochondria occurs before and during the perinuclear clustering of these organelles and does not require the presence of ATP. The release of cytochrome c depends on the induction of the mitochondrial permeability transition but not ATP content.  相似文献   

3.
We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome c from mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with alpha-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-x(L) and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.  相似文献   

4.
Ren Y  Xiong L  Wu JR 《Cell research》2003,13(4):295-300
Tripchlorolide (TC) is a potent antitumor reagent purified from a Chinese herb Tripterygium Wilfordii Hook. f.. However, its cellular effects and mechanism of action are unknown. We showed here that TC induced apoptosis of Chinese Hamster Ovary (CHO) cells in time- and dose-dependent manners. TC resulted in the degradation of Bcl-2, the translocation of Bax from the cytosol to mitochondria, and the release of cytochrome c from mitochondria. Stable overexpression of human Bcl-2 could reduce the apoptosis of TC-treated cells by blocking the translocation of Bax and the release of cytochrome c. These results indicate that TC induces apoptosis of CHO cell by activating the mitochondrion-mediated apoptotic pathway involving the proteins of Bcl-2 family and cytochrome c.  相似文献   

5.
During many forms of apoptosis, Bax, a pro-apoptotic protein of the Bcl-2 family, translocates from the cytosol to the mitochondria and induces cytochrome c release, followed by caspase activation and DNA degradation. Both Bcl-X(L) and the protein phosphatase inhibitor calyculin A have been shown to prevent apoptosis, and here we investigated their impact on Bax translocation. ML-1 cells incubated with either anisomycin or staurosporine exhibited Bax translocation, cytochrome c release, caspase 8 activation, and Bid cleavage; only the latter two events were caspase-dependent, confirming that they are consequences in this apoptotic pathway. Both Bcl-X(L) and calyculin A prevented Bax translocation and cytochrome c release. Bcl-X(L) is generally thought to heterodimerize with Bax to prevent cytochrome c release and yet they remain in different cellular compartments, suggesting that their heterodimerization at the mitochondria is not the primary mechanism of Bcl-X(L)-mediated protection. Using chemical cross-linking agents, Bax appeared to exist as a monomer in undamaged cells. Upon induction of apoptosis, Bax formed homo-oligomers in the mitochondrial fraction with no evidence for cross-linking to Bcl-2 or Bcl-X(L). Considering that both Bcl-X(L) and calyculin A inhibit Bax translocation, we propose that Bcl-X(L) may regulate Bax translocation through modulation of protein phosphatase or kinase signaling.  相似文献   

6.
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.  相似文献   

7.
Induction of apoptosis in HeLa cells with staurosporine produced a rise in the intracellular pH (pH(i)). Intracellular alkalinization was accompanied by translocation of Bax to the mitochondria, cytochrome c release, and cell death. The chloride channel inhibitor furosemide prevented intracellular alkalinization, Bax translocation, cytochrome c release, and cell death. Translocation of full-length Bid to the mitochondria was also prevented by furosemide. The cleavage product of Bid degradation (truncated Bid, tBid) was not detectable in the mitochondria. Its accumulation in the cytosol was prevented by furosemide. Apoptosis induced by tumor necrosis factor-alpha (TNF) lowered pH(i), an effect also accompanied by Bax translocation, cytochrome c release, and cell killing. Furosemide prevented all of these events. TNF induced a depletion of full-length Bid from the mitochondria and the cytosol but induced an accumulation of mitochondrial tBid. Furosemide only delayed full-length Bid depletion and tBid accumulation. The caspase 8 inhibitor IETD did not prevent the translocation of Bax. Although IETD did inhibit the cleavage of Bid and the accumulation of tBid, cell killing was reduced only slightly. It is concluded that with either staurosporine or TNF a furosemide-sensitive change in pH(i) is linked to Bax translocation, cytochrome c release, and cell killing. With TNF Bax translocation occurs as Bid is depleted and can be dissociated from the accumulation of tBid. With staurosporine a role for full-length Bid in Bax translocation cannot be excluded but is not necessary as evidenced by the data with TNF.  相似文献   

8.
Caspases play important roles in the initiation and progression of apoptosis. In experimental models of ATP depletion, we have demonstrated the activation of caspase-9, -8, and -3, which is followed by the development of apoptotic morphology. To determine the specific contribution of caspase-9 to ATP depletion-induced apoptosis, we transfected renal epithelial cells with its endogenous dominant-negative inhibitor caspase-9S. Two cell clones with stable transfection were obtained. These clones expressed caspase-9S, and the cytosol isolated from these cells was resistant to cytochrome c-induced caspase activation in vitro. The clones were then examined for ATP depletion-induced apoptosis. Compared with the wild-type cells, the caspase-9S clones were markedly resistant to apoptosis in this model. Caspase activation was also inhibited. Surprisingly, these clones also showed significantly less cytochrome c release during ATP-depletion. Moreover, Bax translocation to mitochondria was inhibited, suggesting that these clones were resistant to apoptosis not only at the cytosolic caspase activation level but also at the upstream mitochondrial level. To gain insights into the mitochondrial resistance, we analyzed the expression of Bcl-2 family proteins. While the expression of Bax, Bak, and Bcl-2 was comparable to the wild-type cells, the selected clones showed specific up-regulation of Bcl-XL, an anti-apoptotic protein. We conclude that the selected clones were resistant to apoptosis at two levels. In the cytosol, they expressed dominant negative caspase-9, and at the mitochondria they up-regulated Bcl-XL.  相似文献   

9.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

10.
The p53- and Bcl-2-negative leukemic K562 cell line showed resistant to DNA damage-induced Bax activation and apoptosis. The constitutive balanced ratio of Bax/Bcl-XL in K562 mitochondria allowed the formation of active Bax and cytochrome c release from mitochondria in the presence of a BH3-only protein, tBid, in a cell-free system. Bax transfection led to Bax undergoing a conformational change, translocation to mitochondria and homo-oligomerization but not apoptosis in the K562 cell line. After treatment with UV light, while Bcl-XL but not Bax translocated to mitochondria in K562, both Bax and Bcl-XL translocated to mitochondria in the Bax stable transfectant K/Bax cells. The increased ratio of Bax/Bcl-XL in K/Bax mitochondria led to an increased conformationally changed Bax, formation of the homo-multimer of Bax-Bax, and a reduced hetero-dimerization of Bax-Bcl-XL. Increased proportion of active Bax was accompanied with increased percentage of apoptosis. We therefore demonstrate that direct increase in the ratio of mitochondrial Bax/Bcl-XL can induce Bax activation in the p53- and Bcl-2-negative leukemic cells. Increased Bcl-XL translocation and failure in Bax translocation from cytosol to mitochondria play important roles in preventing Bax activation.  相似文献   

11.
Bax, a pro-apoptotic Bcl-2 family protein, translocates to mitochondria during apoptosis, where it causes MOMP (mitochondrial outer membrane permeabilization). MOMP releases pro-apoptotic factors, such as cytochrome c and SMAC (second mitochondrial activator of caspases)/Diablo, into the cytosol where they activate caspases. It is often inferred that Bax activation occurs in a single step, a conformational change in the protein causing its translocation and oligomerization into high-molecular-mass membrane pores. However, a number of studies have shown that Bax translocation to mitochondria does not necessarily induce MOMP. Indeed, Bax translocation can occur several hours prior to release of cytochrome c, indicating that its regulation may be a complex series of events, some of which occur following its association with mitochondria. In the present study, we have examined endogenous Bax in epithelial cells undergoing anoikis, a physiologically relevant form of apoptosis that occurs when normal cells lose contact with the ECM (extracellular matrix). Using BN-PAGE (blue native PAGE), we show that Bax forms a 200 kDa complex before caspase activation. Furthermore, Bax in this 200 kDa complex is not in the active conformation, as determined by exposure of N-terminal epitopes. These results indicate that Bax oligomerization is an event that must be interpreted differently from the currently held view that it represents the apoptotic pore.  相似文献   

12.
Jurkat T-lymphocytes lack p53 and Bax but contain p73 and Bid and are killed by etoposide (ETO). With ETO c-abl is phosphorylated and phosphorylated p73 increased. Translocation of full-length Bid to mitochondria follows, with induction of the mitochondrial permeability transition (MPT) and release of cytochrome c into the cytosol. Pronounced swelling of mitochondria was evident ultrastructurally, and the MPT inhibitor cyclosporin A prevented the release of cytochrome c. Overexpression of Bcl-2 prevented the translocation of Bid, the release of cytochrome c, and cell death. The pan-caspase inhibitor ZVAD-FMK prevented the cell killing, but not the initial release of cytochrome c. An accumulation of tBid occurred at later times in association with Bid degradation. A sequence is proposed that couples DNA damage to Bid translocation via activation of c-abl and p73. Bid translocation induces the MPT, the event that causes release of cytochrome c, activation of caspases, and cell death.  相似文献   

13.
Cyclosporin A (CyA) and bongkrekic acid (BK) prevented Fas-induced apoptosis in two type I cell lines (H9 and SKW6.4) and two type II cell lines (Jurkat and CEM). CyA and BK inhibited the release of cytochrome c in all four cell lines. In type I cells and in CEM cells, CyA and BK did not prevent the translocation of Bax to the mitochondria. In these same cells, full-length Bid decreased in the mitochondria and cytosol. The cleavage product of Bid, tBid, appeared in the cytosol and to a lesser extent in the mitochondria. In Jurkat cells, Bid also decreased in the cytosol, but increased in the mitochondria. Similar to the other cells, tBid appeared in the mitochondria and cytosol. In the type I H9 and SKW6.4 cells and type II Jurkat cells, the caspase-8 inhibitor Z-Ile-Glu(OMe)-Thr-Asp(OMe)-CH2F (IETD) prevented the cell killing. In the type I cells, IETD prevented the translocation of Bax, the degradation of Bid and the accumulation of tBid. By contrast, IETD only marginally protected the type II CEM cells. In these cells in the presence of IETD, Bax translocated to the mitochondria, in the absence of any degradation of Bid or accumulation of tBid. In the type I H9 cells, IETD produced a depletion of ATP, an effect that did not occur in the type II CEM cells. It is concluded that in type I cells the extrinsic signaling pathway is mitochondrial dependent to the same extent as is the intrinsic pathway in type II cells.  相似文献   

14.
The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.  相似文献   

15.
HSP60, Bax, apoptosis and the heart   总被引:9,自引:0,他引:9  
HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria. It is now clear that a significant amount of HSP60 is also present in the extra-mitochondrial cytosol of many cells. In the heart, this cytosolic HSP60 complexes with Bax, Bak and Bcl-XL, but not with Bcl-2. Reduction in HSP60 expression precipitates apoptosis, but does not alter mitochondrial function. During hypoxia, HSP60 cellular distribution changes, with HSP60 leaving the cytosol, and translocating to the plasma membrane. Total cellular HSP60 does not change until 10 h of reoxygenation; however, release of cytochrome c from the mitochondria occurs prior to reoxygenation, coinciding with the redistribution of HSP60. The changes in HSP60, Bax and cytochrome c during hypoxia can be replicated by ATP depletion. HSP60 has also been shown to accelerate the cleavage of pro-caspase3. Thus, HSP60 has a complex role in apoptosis in the cell. Its binding to Bax under normal conditions suggests a key regulatory role in apoptosis.  相似文献   

16.
17.
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.  相似文献   

18.
19.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

20.
In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we compared cells sensitive (38C13) and resistant (EL4) to apoptosis induced by iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. We detected the activation of caspase-3 as well as the activation of caspase-9 in sensitive cells but not in resistant cells under iron deprivation. Iron deprivation led to the release of cytochrome c from mitochondria into the cytosol only in sensitive cells but it did not affect the cytosolic localization of Apaf-1 in both sensitive and resistant cells. The mitochondrial membrane potential (m) was dissipated within 24 h in sensitive cells due to iron deprivation. The antiapoptotic Bcl-2 protein was found to be associated with mitochondria in both sensitive and resistant cells and the association did not change under iron deprivation. On the other hand, under iron deprivation we detected translocation of the proapoptotic Bax protein from the cytosol to mitochondria in sensitive cells but not in resistant cells. Taken together, we suggest that iron deprivation induces apoptosis via mitochondrial changes concerning proapoptotic Bax translocation to mitochondria, collapse of the mitochondrial membrane potential, release of cytochrome c from mitochondria, and activation of caspase-9 and caspase-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号