首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence suggests that cholecystokinin-octapeptide (CCK-8)-induced activation of a Cl- conductance in the membrane of zymogen granules (ZG) is closely related to pancreatic enzyme secretion. Following stimulation of isolated pancreatic acinar cells with increasing concentrations of CCK-8, the Cl- conductance in the ZG from these acini increased, reached a maximum of 40 +/- 7% above basal Cl- conductance at 10(-12) M CCK-8, and then decreased at CCK-8 concentrations higher than 10(-9) M to a level comparable to the basal Cl- conductance. We had interpreted the inhibitory action of high CCK-8 concentrations to be due to the generation of high concentrations of diacylglycerol and/or its metabolites by an "overstimulation" of phospholipase C at supramaximal CCK-8 concentrations. We now show that EGF abolishes the downstroke of the dose response curve for CCK-8-induced ZG Cl- conductance and shifts the stimulatory response to higher CCK-8 concentrations. Similarly in a nominally "Ca(2+)-free buffer" (free [Ca2+] approximately 0.2 nM), stimulated Cl- conductance at 10(-12) M CCK-8 is nearly abolished and the decreased Cl- conductance at 10(-8) M CCK-8 is increased to the level of maximal stimulation at 10(-12) M CCK-8. We conclude that both EGF and low [Ca2+] affect CCK-8-induced ZG Cl- conductance by decreasing phospholipase C activity.  相似文献   

2.
The putative inhibitor of diacylglycerol kinase activity, 6-(2-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl)-ethyl-7-meth yl-5H- thiazolo[3,2-a]pyrimidin-5-one (R59022), markedly potentiated cholecystokinin-C-terminal-octapeptide(CCK-8-)stimulated enzyme secretion from isolated rabbit pancreatic acini. Maximal potentiation occurred when acini were stimulated in the presence of 5-10 microM R59022. Potentiation depended both on the concentration of R59022 and CCK-8. No potentiation was observed when acini were half-maximally stimulated, whereas the secretory response to maximal and supramaximal concentrations of secretagogue was increased by 50-60%. R59022 alone had no effect on basal enzyme secretion and the drug did not potentiate the secretory response to the Ca2+ ionophore A23187 or to the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate. Moreover, no increase in basal secretion was observed when acini were incubated in the presence of both R59022 and forskolin. These observations strongly suggest that receptor-mediated activation of the inositol phospholipid pathway is required for R59022-induced potentiation. R59022 inhibited the CCK-8-stimulated incorporation of 32Pi into phosphatidic acid dose dependently, without affecting the CCK-8-stimulated hydrolysis of 32P-labelled phosphatidylinositol 4,5-bisphosphate. This is consistent with an inhibitory effect of R59022 on acinar cell diacylglycerol kinase activity. The potentiating effect of R59022 was mimicked by 12-O-tetradecanoylphorbol 13-acetate added simultaneously with CCK-8. Therefore, it is concluded that in the presence of 5-10 microM R59022 the receptor-mediated increase in acinar cell diacylglycerol content is enhanced leading to enhanced activation of protein kinase C and to potentiation of the secretory response. The fact that the secretory response to maximal and supramaximal concentrations of CCK-8 is potentiated by R59022 suggests that at these concentrations of secretagogue the diacylglycerol/protein kinase C branch of the signal-transduction route is rate-limiting.  相似文献   

3.
We examined receptor occupation, calcium mobilization and amylase release for cholecystokinin octapeptide (CCK-8) within a 3-min incubation period at 37 degrees C using dispersed acini from rat pancreas. Analysis of competitive binding inhibition data obtained after a 3-min incubation revealed the presence of only a single class of CCK receptors, while two classes of CCK receptor, i.e., high-affinity and low-affinity CCK receptors, were detected when binding reached a steady-state after a 60-min incubation. The IC50 of CCK receptors calculated from the 3-min binding data was 19.0 +/- 0.5 nM (mean +/- S.D.), close to the Kd of the low-affinity CCK receptors determined by equilibrium binding studies. Exposure of fura-2-loaded acini to 10-1000 pM CCK-8 caused an immediate and dose-dependent increase in [Ca2+]i followed by a gradual decrease in [Ca2+]i. The CCK-stimulated amylase release after 3 min of incubation was biphasic; amylase release increased over the dose range of 3-300 pM CCK-8, peaked at 300 pM CCK-8 and decreased with supramaximal concentrations of CCK-8. Our data suggest that occupation of the low-affinity, but not the high-affinity, CCK receptors is more directly associated with calcium mobilization and subsequent stimulation of amylase release in rat pancreatic acini.  相似文献   

4.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

5.
Secretagogue-induced changes in intracellular Ca(2+) play a pivotal role in secretion in pancreatic acini yet the molecules that respond to Ca(2+) are uncertain. Zymogen granule (ZG) exocytosis is regulated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. In nerve and endocrine cells, Ca(2+)-stimulated exocytosis is regulated by the SNARE-associated family of proteins termed synaptotagmins. This study examined a potential role for synaptotagmins in acinar secretion. RT-PCR revealed that synaptotagmin isoforms 1, 3, 6, and 7 are present in isolated acini. Immunoblotting and immunofluorescence using three different antibodies demonstrated synaptotagmin 1 immunoreactivity in apical cytoplasm and ZG fractions of acini, where it colocalized with vesicle-associated membrane protein 2. Synaptotagmin 3 immunoreactivity was detected in membrane fractions and colocalized with an endolysosomal marker. A potential functional role for synaptotagmin 1 in secretion was indicated by results that introduction of synaptotagmin 1 C2AB domain into permeabilized acini inhibited Ca(2+)-dependent exocytosis by 35%. In contrast, constructs of synaptotagmin 3 had no effect. Confirmation of these findings was achieved by incubating intact acini with an antibody specific to the intraluminal domain of synaptotagmin 1, which is externalized following exocytosis. Externalized synaptotagmin 1 was detected exclusively along the apical membrane. Treatment with CCK-8 (100 pM, 5 min) enhanced immunoreactivity by fourfold, demonstrating that synaptotagmin is inserted into the apical membrane during ZG fusion. Collectively, these data indicate that acini express synaptotagmin 1 and support that it plays a functional role in secretion whereas synaptotagmin 3 has an alternative role in endolysosomal membrane trafficking.  相似文献   

6.
7.
EXPERIMENTAL OBJECTIVES: Stimulation of low-affinity CCK-1 receptors on pancreatic acini leads to inhibition of enzyme secretion. We studied signal transduction mechanisms to identify potential causes for the reduced secretion. RESULTS: Co-stimulation experiments with CCK, CCK-JMV-180, and bombesin revealed an inhibition of bombesin-stimulated enzyme secretion by low-affinity CCK-1 receptors. Binding of 125I-gastrin-releasing peptide (the mammalian analogue of bombesin) to acini after CCK preincubation was not altered. After a short preincubation of acini with high concentrations of CCK, intracellular calcium remained responsive to bombesin. In contrast to bombesin or CCK at concentrations of 10(-10) M or lower, high concentrations of CCK caused a strong activation of p125 focal adhesion kinase (p125(FAK)) and a marked reorganisation of the actin cytoskeleton. CONCLUSIONS: Inhibitory mechanisms triggered by low-affinity CCK-1 receptors interrupt enzyme secretion from pancreatic acini at late stages in the signal transduction cascades since bombesin receptor binding and early signalling events remained intact after CCK preincubation. A reorganisation of the actin cytoskeleton is suggested to be the mechanism by which low-affinity CCK-1 receptors actively interrupt enzyme secretion stimulated by other receptors.  相似文献   

8.
The role of a pertussis toxin sensitive GTP-binding protein in mediating between cholecystokinin receptors and phosphatidylinositol 4,5-bisphosphate phosphodiesterase as well as in preventing cholecystokinin from increasing cellular cyclic AMP has been investigated using dispersed acini from rabbit pancreas. Pertussis toxin pretreatment (500 ng/ml, 2 h) did not affect cholecystokinin(octapeptide) (CCK-8)-induced increases in cytosolic free Ca2+ as judged from changes in fluorescence obtained from quin2-loaded acini. Although pretreatment with pertussis toxin was also without effect on resting acinar cell cyclic AMP levels, adenylate cyclase activity was increased, since inhibition of cyclic AMP phosphodiesterase activity by isobutylmethylxanthine (IBMX) resulted in an additional increase in cyclic AMP levels in toxin-treated acini, indicating that acinar cell adenylate cyclase activity is under some tonic inhibitory control by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi) of the adenylate cyclase system. CCK-8 gave an increase in cyclic AMP levels in both control (1.6-fold) and toxin-treated (2.3-fold) acini, leading to cyclic AMP levels in the toxin-treated acini 2-times as high as those in control acini. In the presence of IBMX, the cyclic AMP response to CCK-8 was again markedly enhanced in acini pretreated with the toxin (3.2- vs. 1.8-fold), resulting in cAMP levels in the toxin-treated acini 3.7-times those in the absence of IBMX, 2.5-times those in control acini in the presence of IBMX and 7.0-times those in control acini in the absence of IBMX. Neither the pretreatment with pertussis toxin, nor the presence of IBMX alone, nor the combination had an effect on basal amylase secretion. However, all three treatments potentiated the stimulatory effect of CCK-8 on amylase secretion and the amount of potentiation was proportional to the cyclic AMP levels reached. Our findings suggest that in the intact pancreatic acinar cell Gi inhibition of the catalytic subunit of the adenylate cyclase may largely be responsible for preventing cholecystokinin from increasing cellular cyclic AMP. They moreover show that cyclic AMP is a modulatory agent in rabbit pancreatic enzyme secretion, not able to stimulate secretion itself, but potentiating effects mediated by the phosphatidylinositol-calcium pathway.  相似文献   

9.
Effects of synthetic peptides belonging to the CCK/gastrin family (CCK-39, CCK-8, G/CCK-4, G-17ns) on amylase release in dog pancreatic acini have been measured and correlated with binding of three radio-labelled CCK/gastrin peptides: 125I-BH-(Thr,Nle)-CCK-9, 125I-BH-(2–17)G-17ns and 125I-BH-G/CCK-4 prepared by conjugation of the peptides to iodinated Bolton-Hunter reagent and purified by reverse-phase-HPLC. All the CCK/gastrin peptides produced the same maximal amylase release response. Half-maximal responses (D50) were obtained with 2 · 10?10 M CCK-8; 6 · 10?10 M CCK-39; 10?7 M G.17 ns and 2 · 10?6 M G/CCK-4. Dose-response curves for G-17 ns and G/CCK-4 were similar in configuration but not parallel with those for CCK-8 and CCK-39.Binding studies with 125I-BH(Thr,Nle)-CCK-9 demonstrated the presence of specific CCK receptors on dog pancreatic acini. There was a good correlation between receptor occupancy by CCK-8 and CCK-39 and amylase stimulation since maximal amylase stimulation was achieved when 40–50% of high affinity receptors were occupied. In contrast, a saturation of these receptors was required for maximal stimulation by G-17 ns and G/CCK-4 suggesting the existence of a fraction of receptors that can be occupied by G-17 ns and G/CCK-4 without stimulation of amylase release. Binding studies with labelled (2–17)-G-17 ns and G/CCK-4 confirmed the presence of high affinity sites for G-17 ns and G/CCK-4. These sites were not related to amylase release.This study points out a possible species specificity of biological action of gastrin/CCK peptides on pancreatic exocrine secretion in higher mammals.  相似文献   

10.
During 10-min incubation with increasing concentrations of carbamylcholine (carbachol), amylase release from dispersed rat pancreatic acini increased, became maximal at 2 X 10(-6)M and then decreased. In the concentration range of 10(-7)M to 10(-4)M, 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) caused a dose-dependent inhibition of amylase release induced by a submaximal concentration of carbachol. No inhibitory effect was observed on basal and secretin-stimulated amylase release. TMB-8 showed a significantly greater ability of blocking the action of carbachol than verapamil and diltiazem. TMB-8 could reverse the submaximal stimulation of amylase release caused by supramaximal concentrations of carbachol to a maximal stimulation, while verapamil and diltiazem could not. These results confirm the hypothesis that mobilization of intracellular calcium is the primary step in the action of carbachol on pancreatin acinar cells and contributes to the submaximal secretory response of acinar cells induced by high concentrations of carbachol.  相似文献   

11.
Secretion of enzymes and fluid induced by Ca(2+) in pancreatic acini is not completely understood and may involve activation of ion conductive pathways in zymogen granule (ZG) membranes. We hypothesized that a chromanol 293B-sensitive K(+) conductance carried by a KCNQ1 protein is expressed in ZG membranes (ZGM). In suspensions of rat pancreatic ZG, ion flux was determined by ionophore-induced osmotic lysis of ZG suspended in isotonic salts. The KCNQ1 blocker 293B selectively blocked K(+) permeability (IC(50) of approximately 10 microM). After incorporation of ZGM into planar bilayer membranes, cation channels were detected in 645/150 mM potassium gluconate cis/trans solutions. Channels had linear current-voltage relationships, a reversal potential (E(rev)) of -20.9 +/- 0.9 mV, and a single-channel K(+) conductance (g(K)) of 265.8 +/- 44.0 pS (n = 39). Replacement of cis 500 mM K(+) by 500 mM Na(+) shifted E(rev) to -2.4 +/- 3.6 mV (n = 3), indicating K(+) selectivity. Single-channel analysis identified several K(+) channel groups with distinct channel behaviors. K(+) channels with a g(K) of 651.8 +/- 88.0 pS, E(rev) of -22.9 +/- 2.2 mV, and open probability (P(open)) of 0.43 +/- 0.06 at 0 mV (n = 6) and channels with a g(K) of 155.0 +/- 11.4 pS, E(rev) of -18.3 +/- 1.8 mV, and P(open) of 0.80 +/- 0.03 at 0 mV (n = 3) were inhibited by 100 microM 293B or by the more selective inhibitor HMR-1556 but not by the maxi-Ca(2+)-activated K(+) channel (BK channel) inhibitor charybdotoxin (5 nM). KCNQ1 protein was demonstrated by immunoperoxidase labeling of pancreatic tissue, immunogold labeling of ZG, and immunoblotting of ZGM. 293B also inhibited cholecystokinin-induced amylase secretion of permeabilized acini (IC(50) of approximately 10 microM). Thus KCNQ1 may account for ZG K(+) conductance and contribute to pancreatic hormone-stimulated enzyme and fluid secretion.  相似文献   

12.
In pancreatic acini, cGMP can be increased by secretagogues such as cholecystokinin (CCK), cholinergic agents, and bombesin, whose actions on enzyme secretion are believed to be mediated by protein kinase C. However, the role of cGMP in acinar cell function has been unclear. A recent paper by Rogers et al. (Rogers, J., Hughes, R.G., and Matthews, E. K. (1988) J. Biol. Chem. 263, 3713-3719) reported that two analogues of cGMP, N2,O2-dibutyl guanosine 3':5'-monophosphate (Bt2cGMP) and 8-bromoguanosine 3':5'-monophosphate (8Br-cGMP), at concentrations in the nanomolar range, inhibited the stimulation of amylase secretion caused by CCK-8, bethanechol, bombesin, and 12-O-tetradecanoylphorbol-13-acetate (TPA). Rogers et al. also reported that sodium nitroprusside inhibited the stimulation of enzyme secretion caused by CCK-8 or TPA. These authors concluded that cGMP inhibits protein kinase C-mediated secretion in pancreatic acini. In the present study we attempted to confirm the findings of Rogers et al., We found, however, that Bt2cGMP inhibited CCK-8-stimulated amylase release only at concentrations of the nucleotide above 10 microM. Moreover, there was a close correlation between the ability of Bt2cGMP to inhibit CCK-8-stimulated amylase release and its ability to inhibit binding of 125I-CCK-8. Bt2cGMP, at concentrations as high as 3 mM, did not alter the stimulation of amylase release caused by carbachol, bombesin, TPA, or A23187. 8Br-cGMP, at concentrations up to 1 mM, did not inhibit the stimulation of amylase release caused by CCK-8 or TPA. At concentrations above 0.1 mM, 8Br-cGMP augmented the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Sodium nitroprusside, at a concentration that causes a 60-fold increase in cGMP, did not inhibit the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Our results do not confirm the findings of Rogers et al. and indicate that cGMP does not inhibit protein kinase C-mediated secretion in pancreatic acini.  相似文献   

13.
The relative potencies of cholecystokinin (CCK-33) and its carboxyl terminal octapeptide (CCK-8) for stimulation of amylase release from rat pancreatic acini was measured. Porcine CCK-33 and synthetic CCK-8 were initially subjected to high pressure liquid chromatography to assess purity. Concentrations of each peptide were determined by amino acid analysis. The relative immunoreactivities of CCK-33 and CCK-8 were compared using an antibody that recognizes the common carboxyl terminus of these forms. This antibody bound CCK-8 and CCK-33 with nearly equal affinity. The relative potencies of CCK-33 and CCK-8 were then measured by comparing their abilities to stimulate amylase release from isolated rat pancreatic acini. Statistical analysis of the relative potencies of the two hormones indicated that CCK-8 was 36% more potent than CCK-33 in this assay system. These data suggest that differences in biological activities between large and small forms of CCK are not as great as previously reported.  相似文献   

14.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

15.
The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro.   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies clearly demonstrate that Helicobacter pylori (H. pylori) infection of the stomach causes persistent elevation of ammonia (NH3) in gastric juice leading to hypergastrinemia and enhanced pancreatic enzyme secretion. METHODS: The aim of this study is to evaluate the influence of NH4OH on plasma gastrin level and exocrine pancreatic secretion in vivo in conscious dogs equipped with chronic pancreatic fistulas and on secretory activity of in vitro isolated acini obtained from the rat pancreas by collagenase digestion. The effects of NH4OH on amylase release from pancreatic acini were compared with those produced by simple alkalization of these acini with NaOH. RESULTS: NH4OH given intraduodenally (i.d.) in increasing concentrations (0.5, 1.0, 2.0, 4.0, or 8.0 mM/L) resulted in an increase of pancreatic protein output, reaching respectively 9%, 10%, 19%, 16% and 17% of caerulein maximum in these animals and in a marked increase in plasma gastrin level. NH4OH (8 x 0 mM/L, i.d.) given during intravenous (i.v.) infusion of secretin (50 pmol/kg-h) and cholecystokinin (50 pmol/kg-h) reduced the HCO3 and protein outputs by 35% and 37% respectively, as compared to control obtained with infusion of secretin plus cholecystokinin alone. When pancreatic secretion was stimulated by ordinary feeding the same amount of NH4OH administered i.d. decreased the HCO3- and protein responses by 78% and 47% respectively, and had no significant effect on postprandial plasma gastrin. In isolated pancreatic acini, increasing concentrations of NH4OH (10(-7)-10(-4) M) produced a concentration-dependent stimulation of amylase release, reaching about 43% of caerulein-induced maximum. When various concentrations of NH4OH were added to submaximal concentration of caerulein (10(-12) M) or urecholine (10(-5) M), the enzyme secretion was reduced at a dose 10(-5) M of NH4OH by 38% or 40%, respectively. Simple alkalization with NaOH of the incubation medium up to pH 8.5 markedly stimulated basal amylase secretion from isolated pancreatic acini, whereas the secretory response of these acini to pancreatic secretagogues was significantly diminished by about 30%. LDH release into the incubation medium was not significantly changed in all tests indicating that NH4OH did not produce any apparent damage of pancreatic acini and this was confirmed by histological examination of these acini. CONCLUSIONS: 1. NH4OH affects basal and stimulated pancreatic secretion. 2. The excessive release of gastrin may be responsible for the stimulation of basal pancreatic enzyme secretion in conscious animals, and 3. The inhibitory effects of NH4OH on stimulated secretion might be mediated, at least in part, by its direct action on the isolated pancreatic acini possibly due to the alkalization of these acini.  相似文献   

16.
Effects of chronic alcohol intake on secretion and synthesis of amylase and cationic trypsinogen (CT) were studied with pancreatic acini isolated from male Sprague-Dawley rats fed a Lieber-DeCarli ethanol or control diet for 30 days. Pancreatic acini were incubated in a media containing increasing concentrations of cholecystokinin octapeptide (CCK-8: 0-1000pM) followed by addition of [3H]leucine. Amylase and CT secreted in the media and those labeled in acini were quantitated. Basal and CCK-stimulated secretion of CT was not different in alcoholic and control groups. On the other hand, a dose-response curve of CCK-stimulated amylase secretion from alcoholic acini was markedly reduced with both basal and maximal secretion decreased to only 40% of controls. Basal incorporation of [3H]leucine into amylase was reduced by 70% in alcoholic acini compared to controls while that into CT was not different in the two groups. CCK-8 exhibited a biphasic effect on [3H]leucine incorporation into both enzymes in alcoholic acini: low concentrations of CCK-8 (less than 100pM) increased the incorporation whereas high concentrations (greater than 100pM) decreased it. However, in control acini, CCK-8 induced progressive suppression of the incorporation into these enzymes, the pattern of which was similar to that previously observed in fasted rats (Am. J. Physiol. 241:G116-G112, 1981). This difference in the response pattern resulted in significantly higher rates of CCK-8 induced incorporation into CT in alcoholic acini. These results suggest that the differences observed may possibly be attributable not only to alcohol intake but also to the differences in carbohydrate intake and in temporal patterns of diet consumption.  相似文献   

17.
The role of extracellular Ca2+ in pancreatic acinar membrane damage (cellular injury) by nicotine, membrane-active agents (mellitin, snake venom and Ca2+ ionophore A23187) and secretagogues (CCK-8 and secretin) was investigated. Freshly isolated dispersed pancreatic acini from 18 h fasted adult rats were incubated with one of the aforementioned agents, in the absence and presence of Ca2+. Cellular injury was assessed by measuring the release of pulse-labeled 51Cr and LDH. In addition, release of amylase, trypsinogen and chymotrypsinogen was also determined. In the absence of Ca2+ nicotine (6 mM) caused a profound release of 51Cr and LDH as well as amylase, trypsinogen and chymotrypsinogen from the isolated pancreatic acini. Release of these enzymes and 51Cr decreased sharply with addition of increasing concentrations (0.25-5 mM) of Ca2+. Release of 51Cr and amylase by snake venom (50 micrograms/ml) was found to be 100 and 25% higher, respectively, in the absence of Ca2+ than in its presence. On the other hand, the Ca2+ ionophore A23187 (7 micrograms/ml) was found to be effective in releasing 51Cr and amylase only in the presence of Ca2+. CCK-8, (0.25nM), secretin (1 microM) and mellitin (0.5 microgram/ml) although significantly stimulated amylase secretion (225-350%) in the presence of Ca2+, none of the agents induced 51Cr release from acini, either in the absence or in the presence of extracellular Ca2+. It is concluded that the extracellular Ca2+ plays no specific role in cytotoxic injury in isolated pancreatic acini.  相似文献   

18.
In this work in vitro pharmacological profiles of two analogues of the C-terminal heptapeptide of cholecystokinin (CCK) were evaluated. The analogue Boc-[Nle28, Nle31]-CCK-7, a stable analogue of CCK-8, has the same activity profile as CCK-8, and was found to be very potent in stimulating amylase secretion, phospholipid breakdown and [Ca2+]i mobilization from rat pancreatic acini. It can be used as a probe for studying CCK-actions. The CCK-analogue Boc-Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester, (JMV180), which stimulates amylase secretion without inhibition at supramaximal concentrations, has different effects on phospholipid hydrolysis and [Ca2+]i mobilization, compared to CCK-8 and Boc-[Nle28, Nle31]-CCK-7. Compound JMV180 was unable to significantly promote phospholipid breakdown, and was only 50%-60% as efficacious as Boc-[Nle28, Nle31]-CCK-7 in promoting [Ca2+]i mobilization. These findings suggest that low affinity CCK-receptors might be responsible for the supra-maximal inhibition of amylase secretion, and are correlated with phospholipid breakdown and maximal [Ca2+]i mobilization.  相似文献   

19.
In contrast to supramaximal CCK-8 or caerulein, acute or prolonged supraphysiological levels of endogenous CCK-58 do not cause pancreatitis. Compared with CCK-8, CCK-58 is a much stronger stimulant of pancreatic chloride and water secretion, equivalent to maximally effective secretin, but with a chloride-to-bicarbonate ratio characteristic of acinar fluid. Because supraphysiological endogenous CCK does not cause pancreatitis and because coadministration of secretin ameliorated caerulein- or CCK-8-induced pancreatitis, coincident with restoring pancreatic water secretion, we hypothesized that supramaximal CCK-58 would not induce pancreatitis. Conscious rats were infused intravenously with 2 or 4 nmol x kg(-1) x h(-1) of CCK-8 or synthetic rat CCK-58 for 6 h, and pancreases were examined for morphological and biochemical indexes of acute pancreatitis. A second group was treated as above while monitoring pancreatic protein and water secretion. CCK-8 at 2 nmol x kg(-1) x h(-1) caused severe edematous pancreatitis as evidenced by morphological and biochemical criteria. CCK-58 at this dose had minimal or no effect on these indexes. CCK-58 at 4 nmol x kg(-1) x h(-1) increased some indexes of pancreatic damage but less than either the 2 or 4 nmol x kg(-1) x h(-1) dose of CCK-8. Pancreatic water and protein secretion were nearly or completely abolished within 3 h of onset of CCK-8 infusion, whereas water and protein secretion were maintained near basal levels in CCK-58-treated rats. We hypothesize that supramaximal CCK-58 does not induce pancreatitis because it maintains pancreatic acinar chloride and water secretion, which are essential for exocytosis of activated zymogens. We conclude that CCK-58 may be a valuable tool for investigating events that trigger pancreatitis.  相似文献   

20.
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, Gα13, Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell–cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号