首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly casually involved in the formation of cell type specific heterochromatin compartments, composed of (peri)centromeric regions and chromosomal subregions from neighboring chromosomes territories, which contain silent genes.  相似文献   

5.
6.
7.
DNA and histone methylation in plants   总被引:30,自引:0,他引:30  
Heritable patterns of gene activity and gene silencing arise by the formation and the propagation of specific chromatin states that restrict or permit gene expression. In mammals and in plants, restrictive heterochromatin is associated with the hypermethylation of DNA at CG sites and with the specific modification of histones, such as the methylation of histone H3 at lysine 9 (H3K9(Me)). In addition to CG methylation, plant nuclear DNA packaged in restrictive chromatin is also usually methylated in cytosines outside a CG sequence context. The functional relationship between an unexpectedly complex plant DNA-methylation system and histone modifications that lead to chromatin compaction and gene silencing is under intense scrutiny. The results of recent studies indicate intriguing links between chromatin remodeling, histone methylation, DNA methylation and RNA interference.  相似文献   

8.
9.
Shi J  Dawe RK 《Genetics》2006,173(3):1571-1583
We report a detailed analysis of maize chromosome structure with respect to seven histone H3 methylation states (dimethylation at lysine 4 and mono-, di-, and trimethylation at lysines 9 and 27). Three-dimensional light microscopy and the fine cytological resolution of maize pachytene chromosomes made it possible to compare the distribution of individual histone methylation events to each other and to DNA staining intensity. Major conclusions are that (1) H3K27me2 marks classical heterochromatin; (2) H3K4me2 is limited to areas between and around H3K27me2-marked chromomeres, clearly demarcating the euchromatic gene space; (3) H3K9me2 is restricted to the euchromatic gene space; (4) H3K27me3 occurs in a few (roughly seven) focused euchromatic domains; (5) centromeres and CENP-C are closely associated with H3K9me2 and H3K9me3; and (6) histone H4K20 di- and trimethylation are nearly or completely absent in maize. Each methylation state identifies different regions of the epigenome. We discuss the evolutionary lability of histone methylation profiles and draw a distinction between H3K9me2-mediated gene silencing and heterochromatin formation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

17.
The JmjC-containing lysine demethylase, KDM4D, demethylates di-and tri-methylation of histone H3 on lysine 9 (H3K9me3). How KDM4D is recruited to chromatin and recognizes its histone substrates remains unknown. Here, we show that KDM4D binds RNA independently of its demethylase activity. We mapped two non-canonical RNA binding domains: the first is within the N-terminal spanning amino acids 115 to 236, and the second is within the C-terminal spanning amino acids 348 to 523 of KDM4D. We also demonstrate that RNA interactions with KDM4D N-terminal region are critical for its association with chromatin and subsequently for demethylating H3K9me3 in cells. This study implicates, for the first time, RNA molecules in regulating the levels of H3K9 methylation by affecting KDM4D association with chromatin.  相似文献   

18.
High-resolution profiling of histone methylations in the human genome   总被引:75,自引:0,他引:75  
Barski A  Cuddapah S  Cui K  Roh TY  Schones DE  Wang Z  Wei G  Chepelev I  Zhao K 《Cell》2007,129(4):823-837
Histone modifications are implicated in influencing gene expression. We have generated high-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology. Typical patterns of histone methylations exhibited at promoters, insulators, enhancers, and transcribed regions are identified. The monomethylations of H3K27, H3K9, H4K20, H3K79, and H2BK5 are all linked to gene activation, whereas trimethylations of H3K27, H3K9, and H3K79 are linked to repression. H2A.Z associates with functional regulatory elements, and CTCF marks boundaries of histone methylation domains. Chromosome banding patterns are correlated with unique patterns of histone modifications. Chromosome breakpoints detected in T cell cancers frequently reside in chromatin regions associated with H3K4 methylations. Our data provide new insights into the function of histone methylation and chromatin organization in genome function.  相似文献   

19.
Histone modifications are implicated in regulating chromatin condensation but it is unclear how they differ between constitutive heterochromatin and unexpressed euchromatin. Chromatin immunoprecipitation (ChIP) assays were done on various human cell populations using antibodies specific for acetylated or methylated forms of histone H3 or H4. Analysis of the immunoprecipitates was by quantitative real-time PCR or semi-quantitative PCR (SQ-PCR). Of eight tested antibodies, the one for histone H4 acetylated at lysine 4, 8, 12, or 16 was best for distinguishing constitutive heterochromatin from unexpressed euchromatin, but differences in the extent of immunoprecipitation of these two types of chromatin were only modest, although highly reproducible. With this antibody, there was an average of 2.5-fold less immunoprecipitation of three constitutive heterochromatin regions than of four unexpressed euchromatic gene regions and about 15-fold less immunoprecipitation of these heterochromatin standards than of two constitutively expressed gene standards (P <0.001). We also analyzed histone acetylation and methylation by immunocytochemistry with antibodies to H4 acetylated at lysine 8, H3 trimethylated at lysine 9, and H3 methylated at lysine 4. In addition, immunocytochemical analysis was done with an antibody to heterochromatin protein 1alpha (HP1alpha), whose preferential binding to heterochromatin has been linked to trimethylation of H3 at lysine 9. Our combined ChIP and immunocytochemical results suggest that factors other than hypoacetylation of the N-terminal tails of H4 and hypermethylation of H3 at lysine 9 can play an important role in determining whether a chromatin sequence in mammalian cells is constitutively heterochromatic.  相似文献   

20.
This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号