首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphogenesis of four spatially differentiated surface regions of the silkmoth eggshell (chorion) has been documented and correlated with differing patterns of chorion protein synthesis within the corresponding secretory cells. During the first half of choriogenesis the polygonal pattern of ridges which cover the entire chorion appears. Regional differences in the morphology of developing ridges are not accompanied by significant protein differences, and thus presumably reflect differences in secretory cell behavior and shape. During the second half of choriogenesis expanding domes of the chorion located immediately beneath three-cell junctions of the overlying secretory surface become prominent surface features exclusively in the aeropyle crown region. Domes are composed of a thin lamellar skin and an inner buttressing “filler.” Continued filler deposition appears to cause a ripping of the lamellar skin, transforming the dome into a multiple-pronged crown that overflows with filler. Continued synthesis of lamellar chorion components elongates and strengthens the crowns until they can stand alone without the support of filler. In the aeropyle crown region, synthesis of regionally specific proteins begins in the second half of choriogenesis and accelerates until the final stages, in parallel with dome/crown formation. The more numerous proteins which are common to all regions are synthesized at approximately equal rates within all regions, and their synthesis decelerates toward the end of choriogenesis. Fifteen of the proteins (excluding filler) which are found predominantly in the aeropyle crown region may be necessary but not sufficient for crown formation, since they also occur in the stripe region (1); presumably the secretory cell surfaces mold the same components differently in the two regions. Filler appears to play an important scaffolding role in crown formation. A group of eight aeropyle crown region-specific chorion proteins which compose filler have been identified on two-dimensional gels and shown to be restricted to one of five previously described classes of chorion proteins.  相似文献   

2.
The silkmoth chorion is a helicoidally layered, fibrous structure which is constructed in four sequential morphogenetic modes, beginning with the assembly of a thin, low density lamellar framework. Subsequently, the framework expands in height by the insertion of additional fiber sheets into the preexisting lamellae. This expansion mode begins farthest from the follicular secretory cells and progresses in reverse. Individual fibers then grow in thickness, presumably through accretion of newly synthesized proteins, and eventually fuse. This third mode, which also begins in the most distant lamellae and proceeds in reverse, is called densification, as it results in an approximately two fold increase in overall chorion density without further lamellar expansion. Finally, lamellogenesis is recapitulated in miniature in a region of the chorion's surface, where very-late-forming lamellae are molded into prominent surface structures, the aeropyle crowns. The densification and especially the expansion modes suggest considerable fluidity in the developing chorion, consistent with its proposed cholesteric liquid crystalline structure. Such a structure is also consistent with numerous deviations from the ideal helicoidal array. These distortions and defects are described and discussed in terms of their possible origin and function.  相似文献   

3.
4.
Integrated phylogenetic and developmental analyses should enhance our understanding of morphological evolution and thereby improve systematists' ability to utilize morphological characters, but case studies are few. The eggshell (chorion) of Lepidoptera (Insecta) has proven especially tractable experimentally for such analyses because its morphogenesis proceeds by extracellular assembly of proteins. This study focuses on a morphological novelty, the aeropyle crown, that arises at the end of choriogenesis in the wild silkmoth genus Antheraea. Aeropyle crowns are cylindrical projections, ending in prominent prongs, that surround the openings of breathing tubes (aeropyle channels) traversing the chorion. They occur over the entire egg surface in some species, are localized to a circumferential band in many others, and in some are missing entirely, thus exhibiting variation typical of discrete characters analyzed in morphological phylogenetics. Seeking an integrated developmental-phylogenetic view, we first survey aeropyle crown variation broadly across Antheraea and related genera. We then map these observations onto a robust phylogeny, based on three nuclear genes, to test the adequacy of character codings for aeropyle crown variation and to estimate the frequency and direction of change in those characters. Thirdly, we draw on previous studies of choriogenesis, supplemented by new data on gene expression, to hypothesize developmental-genetic bases for the inferred chorion character transformations. Aeropyle crowns are inferred to arise just once, in the ancestor of Antheraea, but to undergo four or more subsequent reductions without regain, a pattern consistent with Dollo's Law. Spatial distribution shows an analogous trend, though less clear-cut, toward reduction of coverage by aeropyle crowns. These trends suggest either that there is little or no natural selection on the details of the aeropyle crown structure or that evolution toward functional optima is ongoing, although no direct evidence exists for either. Genetic, biochemical, and microscopy studies point to at least two developmental changes underlying the origin of the aeropyle crown, namely, reinitiation of deposition of chorionic lamellae after the end of normal choriogenesis (i.e., heterochrony), and sharply increased production of underlying "filler" proteins that push the nascent final lamellae upward to form the crown (i.e., heteroposy). Identification of a unique putative cis-regulatory element shared by unrelated genes involved in aeropyle crown formation suggests a possible simple mechanism for repeated evolutionary reduction and spatial restriction of aeropyle crowns.  相似文献   

5.
Four spatially differentiated surface regions, called aeropyle crown, flat, stripe, and micropyle, are found on the mature eggshell (chorion). Specializations of the apical surfaces of the secretory follicular epithelial cells are implicated in the formation of regional patterns on the chorion. Some of these specializations are restricted to cells overlying certain regions; others are shared by more than one region. Differences between regions are more apparent on the surface than within the bulk of the chorion. Evidence is presented that distinct cell populations, corresponding to the regions, are present long before the start of choriogenesis. One hundred eighty-six chorion-specific polypeptides have been resolved by two-dimensional gel electrophoresis. Fifteen of these are found entirely or predominantly in the aeropyle crown and stripe regions, while eight others are restricted to the aeropyle crown region. Certain of the spatially restricted components are quite unusual in their amino acid compositions when compared with previously analyzed chorion components. Others are closely related, although clearly distinct.  相似文献   

6.
7.
Morphogenesis of the silkmoth eggshell is described at the ultrastructural level. Four zones are each assembled in a distinct manner and during a distinct developmental period: the innermost vitelline membrane and the adjacent trabecular layer appear consecutively, followed by a thin sieve layer, and a thick, lamellate chorion. Once formed, the sieve layer remains attached to microvilli, and thus all components which assemble into lamellae must pass through the sieve layer. Initially, lamellogenesis (and sieve layer formation) occurs in patches overlying trabeculae. Lamellae quickly fuse and new ones are added, presumably by apposition. Distinct types of lamellae seen in the mature chorion are already distinguishable in early lamellogenesis. The final lamellar number is attained before the developing chorion is one-half its final thickness or one-fifth its final dry weight. The early lamellae constitute a framework which is subsequently modified through expansion and densification. Proteins which may represent components of various parts of the eggshell have been identified on the basis of their timing of synthesis, relative amino acid compositions, and spatial distributions within the chorion.  相似文献   

8.
The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis—early choriogenesis, vitellogenesis—middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.  相似文献   

9.
In larval sea lampreys (Petromyzon marinus), a small, relatively inconspicuous olfactory organ sac contains small, densely packed olfactory receptor neurons and sustentacular cells. During metamorphosis, the larval organ transforms into a prominent lamellar structure with large distinct olfactory epithelial cells that is characteristic of the adult lamprey. In the present study, scanning electron microscopy and light microscopy are used to examine changes during the seven stages (1–7) of metamorphosis. The magnitude of growth over the course of metamorphosis is evident from the doubling of the relative weight of the nasal sac. During early metamorphosis (stages 1 and 2), the larval olfactory organ enlarges, and by stage 3 specific adult structures begin to form, namely a nasal valve between the nasal tube and the organ, lamellar folds, and diverticuli of the accessory olfactory organ. Subsequent development involves widening of the cells lining the lamellar folds to the form characteristic of postmetamorphic lampreys. Although the cells in the troughs initially retain numerical density values that are significantly higher than those on the lamellar surfaces, by stage 7 values decline both in troughs and along lamellar surfaces to those observed in adults. These results show that although expansion of the olfactory organ is ongoing throughout metamorphosis, remodeling occurs early (by stage 3). This timing provides space for extensive olfactory receptor neuron neurogenesis and differentiation and correlates with the transformation of some organs that were previously examined. This is the first report in any species of olfactory receptor neuron zonation based on morphometric characteristics. J. Morphol. 231:41–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
McKenzie JA  Bixby EC  Silva MJ 《PloS one》2011,6(12):e29328
Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading) or lamellar bone (LBF loading). A set of normal (non-loaded) rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR). The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.  相似文献   

11.
In this investigation, we compare the multiplication rates and morphogenetic responses of the two most studied Tetrahymena species, T. pyriformis and T. thermophila, at supraoptimal temperatures. Although the upper temperature limits differ greatly in the two species, the pattern of growth responses to high temperature is for the most part similar, with some differences in detail. The transient recovery of cell division at the highest temperature that allows cell division, characteristic of T. pyriformis, is observed in a less distinct form in T. thermophila. Moreover, there is a remarkable difference in developmental response, with drastic abnormalities in patterning of oral structures during the transient recovery of cell division in T. pyriformis, and far more limited abnormalities under similar conditions in T. thermophila. The abnormalities result from spatial disorder in the alignment and orientation of basal body pairs within the early oral primordium, followed by failures in the realignment that normally occurs as oral structures (membranelles and undulating membrane) mature. Both the initial spatial disorder and the failures in realignment are far more severe in T. pyriformis than in T. thermophila.  相似文献   

12.
Lambda DNA packaging in vitro can be examined in stages. In a first step, lambda DNA interacts with terminase to form a DNA-enzyme complex, called complex I. Upon addition of proheads, in a second step, a ternary complex, complex II, containing DNA, terminase and the prohead is formed. Finally, upon addition of the rest of the morphogenetic components, complete phages are assembled. We have investigated the effect of the FI gene product (gpFI) in these reactions and found that a stimulation in phage yield is observed when gpFI is included early in the reaction, at the time when DNA, terminase and proheads interact to form complex II. Measurements of complex II formation revealed that gpFI stimulated the rate of formation of this intermediate. gpFI was further shown to stimulate the addition of proheads to preformed complexes I to give complex II, but the protein did not stimulate complex I formation.  相似文献   

13.
14.
A. H. Valster  P. K. Hepler 《Protoplasma》1997,196(3-4):155-166
Summary The distribution of microtubules and actin microfilaments during caffeine-induced inhibition of cell plate formation has been studied in livingTradescantia stamen hair cells. Previous studies have shown that caffeine allows cell plate initiation but prevents its completion, resulting in binucleate cells. In the present study, confocal microscopy of cells microinjected with fluorescent brain tubulin or phalloidin, and cultured in the presence 5 mM caffeine, revealed that the initiation and early lateral expansion phase of the phragmoplast occur normally. However, caffeine completely inhibits the formation of the cytoskeletal torus which occurs in untreated cells during the late stages of cell plate and phragmoplast expansion. Caffeine further causes the disintegration of the incomplete cell plate. The results allow us to distinguish two phases in cell plate and phragmoplast growth: the initiation and early expansion phase, which is not affected by caffeine, and the late lateral expansion phase, which is completely inhibited in the presence of caffeine. Also in this study, the use of a high phalloidin concentration has revealed structural detail about the actin microfilaments involved in cell plate formation: microfilaments are observed that link the expanding edge of the phragmoplast with the cortical division site. In addition, cortical actin patches are observed within the actin depleted zone that might play a role in guidance of phragmoplast and cell plate expansion.  相似文献   

15.
The present study has been inspired by the conflicting data in the relevant literature concerning the embryogenesis of cell types of the parabronchial epithelium and the formation, discharge and distribution of trilaminar substance and lamellar bodies. Lung tissue from embryonic, newly hatched, immature and mature quail was subjected to standard processing for light and transmission electron microscopy. The parabronchial rudiments form shallow primitive atria on embryonic day 13. The precursors of granular cells differentiate with lamellar bodies in their cytoplasm. The residual population of non-granular epithelial cells is the common source for the differentiation of primitive squamous atrial and respiratory cells, the potential producers of trilaminar substance. The primitive squamous atrial cells sprout as branching infundibular canaliculi into the mesenchyme on embryonic day 14. The infundibular epithelium differentiates into the squamous respiratory cells that constitute with blood capillaries the blood-air barrier. Not until the time of hatching could the trilaminar substance be visualized being produced by squamous atrial and respiratory cells. In the late prehatching and early posthatching period the granular cells intensely escalate the production and discharge of lamellar bodies. The lamellar bodies form, together with sheets of trilaminar substance, mixed multilayered masses in atria. They disappear fast in the successive posthatching period. The formation of trilaminar substance in squamous atrial and respiratory cells is governed by the agranular endoplasmic reticulum, the cisternae of which take part in the formation of trilaminar units. The gas exchange tissue is predominantly represented by infundibula in immature quail. The posthatching growth of the gas exchange tissue of immature to mature quail occurs via intense multiplication of air and blood capillaries.  相似文献   

16.
The eggshell structure of four sandfly species: Phlebotomus perniciosus Newstead, P.perfiliewi Parrot, P.papatasi Scopoli and P.duboscqi Neveu-Lemaire, was examined by scanning and transmission electron microscopy (SEM and TEM). At the TEM level, the eggshell appears to have a homogeneous vitelline envelope and a thick chorion. At SEM level, the eggshell of all species is characterized by the outer chorion forming a series of fifteen to twenty longitudinal sinuous ridges, cross-linked in places to form a pattern of polygons, each line of the chorion consisting of columns arranged in a palisade. The aeropyle region of the egg is described for the first time in phlebotomine sandflies. Specific characters of the eggshell topography are described for distinguishing between these and other species of Phlebotomus.  相似文献   

17.
The morphogenetic processes of coelomic pouch (CP) formation in starfish embryos that were experimentally dissociated and induced to undergo reconstruction were studied. An analysis of these embryos randomly chosen from several cultures showed that CP always form on either side of the esophagus, even though the CP formation can differ in timing of initiation and duration, and can vary in number and size from embryo to embryo. Successive observations of CP formation in living embryos revealed two distinct sequences of CP development that were accompanied by different appearances of the blastocoele. These processes were named 'enterocoelic-like' and 'schizocoelic-like' CP formation. The former resembled normal development and occurred in embryos with a transparent blastocoele. The latter was characterized by the aggregation and epithelialization of mesenchyme-like cells on either side of the esophagus and was observed in embryos possessing a cloudy blastocoele. In a few embryos, both types of CP formation were seen in the same individual ('mosaic type' CP formation). Thick sections of embryos possessing a cloudy blastocoele revealed that aggregates of mesenchyme-like cells undergoing CP formation directly contact the developing esophagus. Together, these data demonstrate flexibility in the morphogenetic processes that regulate CP formation, and suggest that positional cues in the esophagus regulate the placement of CP.  相似文献   

18.
In the ovary of adult Blattella germanica, the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) is highly expressed in mid-late vitellogenesis, suggesting a functional link of the mevalonate pathway with choriogenesis. The inhibitor of HMG-CoA reductase, fluvastatin, applied in females in late vitellogenesis, inhibits the activity of the enzyme in the ovary and in the developing embryos within the ootheca. This does not affect choriogenesis or ootheca formation but reduces the number of larvae per ootheca. Our results suggest that fluvastatin is incorporated into the oocytes and has delayed inhibitory effects on the oviposited eggs. HMG-CoA reductase is essential for embryogenesis, but not for chorion formation.  相似文献   

19.
The Bombyx mori doublesex (Bmdsx), a homologue of doublesex of Drosophila, is the bottom most gene of the sex determination cascade. Bmdsx plays a very crucial role in somatic sexual development. Its pre-mRNA sex-specifically splices to generate two splice variants; one encodes female-specific and the other encodes male-specific polypeptides which differ only at their C-termini. The open reading frame of Bmdsx consists of 5 exons, of which exons 3 and 4 are female-specific and are skipped in males. In the present study, we have identified a third splice form of the Bmdsx which is specific only to females and differs from the previously reported Bmdsxf isoform by the presence of 15 bp sequence. This new female splice form is generated as a result of alternative 5′ splice site selection in the third exon adding additional 15 bp sequence in exon 3 which results in alteration of the reading frame leading to incorporation of an early stop codon. Thus the protein encoded by this splice form is 20 aa shorter than the known BmDsxF. Initial results obtained from the study of dsx homologues in Saturniid silkmoths suggest that both the female-specific Dsx proteins are essential for female sexual differentiation. It remains to be seen whether female-specific multiple splice forms of dsx are characteristic feature of only silkmoths or widespread among lepidopterans. The findings that sex determination mechanism is unique in lepidopterans offer an opportunity to develop genetic sexing methods in beneficial as well as economically destructive lepidopteran pests.  相似文献   

20.
In the silkmoth Bombyx mori, choriogenesis occurs through the developmentally controlled deposition of several related classes of chorion proteins onto the oocyte by surrounding follicular cells. In the GrB mutant strain, a distinctive family of proteins (Hc) normally expressed late in choriogenesis, as well as several proteins of middle development specificity, are missing due to the deletion of the corresponding genes from the chorion locus. In addition, a smaller set of proteins normally confined to mid-choriogenesis is found to be prolonged in expression in homozygote mutant but not heterozygote individuals. To elucidate the molecular organization of the chorion locus in the GrB genotype, we scanned a part of the wild-type locus represented by a chromosomal walk of 270,000 bases through library screening and genomic DNA hybridizations using a series of unique probes. A chromosomal clone, GrB4, whose sequences showed the expected characteristics of the deletion junction, was isolated from a partial EcoRI library of mutant genomic DNA. Through comparative hybridizations, mapping and sequencing, the precise location of one of the deletion breakpoints was identified on one of the clones mapping in the characterized part of the wild-type locus. Attempts to locate the other breakpoint in wild-type DNA and to extend the structural characterization past the deletion junction through chromosomal walking were unsuccessful, due to the apparent absence of these sequences from libraries of wild-type and mutant genomic DNA, respectively. Hybridizations of the deletion region on clone GrB4 to cDNA derived from follicular RNA indicate that no gene sequences are directly interrupted by the deletion, and reveal the presence of a gene sequence of unknown function 1000 to 5000 bases to the right of deletion junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号