首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Preserving peripheral populations is a key conservation issue because of the adaptive potential to environmental change they provide for the species as a whole. Yet, peripheral populations are often small and isolated, i.e. more vulnerable to stochastic events and prone to extinction. We studied a peripheral population of Hoopoe (Upupa epops), a rare insectivorous farmland bird, in the Swiss Alps. We first investigated the effect of weather variation on food provisioning to chicks by Hoopoe parents. Second, while accounting for density-dependence, we tested the extent to which breeding success is governed by weather circumstances and assessed the possible consequences of climate variation on population growth. Provisioning rate and provisioned prey biomass were negatively affected by adverse weather (cool, rainy days), were higher in males and also increased with brood size. Much smaller proportions of molecrickets (Gryllotalpa gryllotalpa; the most profitable prey locally, constituting 93% of chicks’ food biomass) were provisioned on days with adverse weather, irrespective of brood size. Rainfall prior to hatching and during the first days of chick life had a negative impact on their survival, and there was a positive effect of temperature on chick survival just before fledging. Reproductive output was negatively affected by precipitation during the hatching period, but was enhanced by warm temperature just before hatching and in the last days before fledging. Our model showed that the variable reproductive output has a strong impact on the population growth: a succession of adverse, rainy springs would cause a rapid decline of the population. This case study confirms that conservation efforts may be obliterated if risks linked to increasing climate variability are not properly accounted for in the management of small peripheral populations.  相似文献   

3.
The red alga Gelidium robustum is important,because of its commercial exploitation in Mexico as araw material for the agar industry, providing 10% ofthe world production of agarophytes. In recent years,its annual harvest in Mexico has shownobvious,variations partly because of an increasedharvesting effort, but also because of environmentalchanges. An analysis is presented of the effect thatinterannual variability of the sea surfacetemperature, wind speed, and upwelling index had onthe relative abundance of this alga from 1980 to 1990.The results indicate a close relation betweenenvironmental fluctuations and the relative abundanceof this species. The response of G. robustum tothe different environmental conditions has not alwaysbeen equal. During El Niño 1982–84, the seasurface temperature was the most important factor andthere was a high negative correlation with therelative abundance. A lag period of three monthsshowed a positive correlation with upwelling index andwind speed. Under normal conditions and during LaNiña, the relative abundance of the alga showed apositive correlation with the sea surface temperature. For the upwelling index and wind speed, therelationship was similar to that during El Niño.  相似文献   

4.
Contemporary research has documented a large number of shifts in spring phenology and changes in distribution range although the average spring temperatures have increased by only 0.3–0.6 °C over the past 100 years. Generally, earlier breeding birds have larger clutch sizes, and the advancing spring could thus potentially increase breeding success. Shifts in spring phenology can, however, be crucial for bird reproduction, and mistiming the breeding event may even have negative consequences for population development. Our aim was to explore how weather and prey abundance relates to the breeding performance of a north European top predator, the northern goshawk Accipiter gentilis. Our nationwide dataset from Finland, spanning the period 1989–2004, shows that ambient weather has a greater impact on the timing and success of breeding than the density of grouse Tetraonidae, the main prey of goshawks. Higher early spring temperatures were associated with advancing hatching date of goshawks. Correspondingly, grouse density and temperature during laying and brooding were positively associated with brood size, while precipitation showed a negative connection. Applying our models to a future scenario of climate warming, combined with a 50 % reduction in grouse density, suggests that average breeding dates will advance only 2.5 days and average breeding success would remain the same. Notably, breeding success was not spatially equal throughout Finland, as northern and eastern populations suffered most from declining grouse densities. The observed pattern is thus the opposite to what is expected from a population situated at the northern edge of its distribution range, and thus may help to understand why populations may not increase at the northern edge of their thermal distribution due to climate change.  相似文献   

5.
An improved understanding of the ecology of fleas on California ground squirrels, Otospermophilus beecheyi, is warranted given the role of fleas in the transmission, and perhaps persistence, of the plague‐causing bacterium Yersinia pestis. We sampled O. beecheyi on a seasonal basis from three study sites, each representing a different land use type (preserve, pasture, and agriculture) in the San Joaquin Valley, CA. Overall, the abundance of fleas on squirrels was greatest in spring at the preserve site, in summer at the agriculture and pasture sites, and in winter at the pasture site. Hoplopsyllus anomalus, the species most frequently found on squirrels, was most abundant in spring at the preserve site and in summer at the agriculture and pasture sites. Oropsylla montana was most abundant in winter at the pasture site and on adult squirrels. Echidnophaga gallinacea was most abundant in fall on juvenile squirrels at the preserve site. All three flea species we encountered are known to be potential vectors of Y. pestis. Future efforts to predict flea species occurrence and abundance (and plague risk) at sites of concern should consider seasonal microclimatic conditions and the potential influence of human land use practices.  相似文献   

6.
Summary Pollen data from three samplers located at heights of 0.5m, 10m and 55 m were used to investigate vertical differences in pollen abundance in North-Central London. Weekly accumulative counts for all pollen types were collected from February to September 1988. Distinct variations in abundance between the sites were recorded for some pollen taxa. For example,Gramineae recorded greater abundance at the higher sampling position. Other pollen types, includingPlatanus, were recorded at consistently greater abundance at the 10 m height compared to the 55 m level. Significant differences between the pollen counts at these two heights are discussed in relation to pollen source area, the specific gravity of the pollen grain, airflow patterns of the urban area and the weather conditions affecting pollen dispersal. Tracer experiments using Lycopodium spores were employed to investigate dispersal patterns to all three sampling heights. The results from these trials are used to assist in the interpretation of data from the depositional samplers. The study reported in this paper forms part of a wider survey of 14 sampling sites examining spatial variations in pollen abundance.  相似文献   

7.
In the lowland moist forest of Barro Colorado Island (BCI), Panama, larvae of four common species of odonates, a mosquito, and a tadpole are the major predators in water-filled tree holes. Mosquito larvae are their most common prey. Holes colonized naturally by predators and prey had lower densities of mosquitoes if odonates were present than if they were absent. Using artificial tree holes placed in the field, we tested the effects of odonates on their mosquito prey while controlling for the quantity and species of predator, hole volume, and nutrient input. In large and small holes with low nutrient input, odonates depressed the number of mosquitoes present and the number that survived to pupation. Increasing nutrient input (and consequently, mosquito abundance) to abnormally high levels dampened the effect of predation when odonates were relatively small. However, the predators grew faster with higher nutrients, and large larvae in all three genera reduced the number of mosquitoes surviving to pupation, even though the abundance of mosquito larvae remained high. Size-selective predation by the odonates is a likely explanation for this result; large mosquito larvae were less abundant in the predator treatment than in the controls. Because species assemblages were similar between natural and artificial tree holes, our results suggest that odonates are keystone species in tree holes on BCI, where they are the most common large predators. Received: 4 November 1996 / Accepted: 11 April 1997  相似文献   

8.
Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.  相似文献   

9.
Impact of expected climate change on mangroves   总被引:6,自引:0,他引:6  
C. D. Field 《Hydrobiologia》1995,295(1-3):75-81
There is a consensus of scientific opinion that the activities of man will cause a significant change in the global climate over the next hundred years. The rising level of carbon dioxide and other industrial gases in the atmosphere may lead to global warming with an accompanying rise in sea-level. Mangrove ecosystems grow in the intertidal zones in tropical and sub-tropical regions and are likely to be early indicators of the effects of climate change. The best estimates of predicted climate change in the literature are presented. It is suggested that a rise in mean sea-level may be the most important factor influencing the future distribution of mangroves but that the effect will vary dramatically depending on the local rate of sea-level rise and the availability of sediment to support reestablishment of the mangroves. The predicted rise in mean air temperature will probably be of little consequence to the development of mangroves in general but it may mean that the presence of mangroves will move further north and south, though this will depend on a number of additional factors. The effect of enhanced atmospheric CO2 on the growth of mangroves is unknown at this time but that there is some evidence that not all species of mangroves will respond similarly. The socio-economic impacts of the effects of climate on mangrove ecosystems may include increased risk of flooding, increased erosion of coast lines, saline intrusion and increased storm surges.  相似文献   

10.
Synopsis Distribution patterns and relative abundances were determined for rocky intertidal fishes in central California. Distributions were described relative to a categorization scheme of tidepools based on certain biotic and physical criteria. The fishes displayed a variety of distributions over tidepool categories and showed some segregation within categories.Cottids were the predominant tidepool fishes encountered, withOligocottus snyderi andClinocottus analis comprising 62% of all captures. The cebidichthyidCebidichthys violaceus and the stichaeidAnoplarchus purpurescens were also relatively common and dominated the out-of-water microhabitat.Oligocottus snyderi showed a minor shift in distribution over tidepool categories between seasons, and C. analis showed none, but both species varied substantially in abundance. Temporal changes in abundance of the more common species indicated seasonal trends, but the duration of the census period was insufficient to verify this.It is concluded that while species interactions may have influenced the observed patterns of habitat partitioning, the roles of predation and competition cannot be unambiguously defined. Presently, neither these nor historical factors can be discounted from having significantly influenced the evolution of the intertidal fish community.  相似文献   

11.
Wetlands Ecology and Management - The Domaine de la Palissade is a 700-ha nature reserve located at the mouth of the Rhône river in southern France. Since 2006, the tidal wetlands have been...  相似文献   

12.
Influences of climate on life history traits in natural populations are well documented. However, the implications of between-individual variation in phenotypic plasticity underlying observed trait-environment relationships are rarely considered due to the large, long-term datasets required for such analysis. Studies typically present correlations of annual trait means with climate or assume that individual phenotypic responses are constant. Here, we examine this additional level of variation and show that, in a red deer population on the Isle of Rum, Scotland, changes in climate generate changes in phenotype only amongst individuals who have experienced favourable ecological conditions. Examination of relationships between offspring birth weight and spring temperature within the lifetimes of individual females revealed that the tendency to respond to climate declined as the population density experienced early in life increased. The presence of such systematic variation in individual plasticity is rarely documented in the wild, and has important implications for our understanding of the environmental dependencies of traits under varying ecological conditions.  相似文献   

13.
14.
15.
Impact of climate change on plant phenology in Mediterranean ecosystems   总被引:1,自引:0,他引:1  
Plant phenology is strongly controlled by climate and has consequently become one of the most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000 records for six phenological events of 29 perennial plant species monitored from 1943 to 2003 for a comprehensive assessment of plant phenological responses to climate change in the Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were studied together during a complete annual cycle before phenological events to determine their relative importance and potential seasonal carry‐over effects. Warm and dry springs under a positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the growing season. Spatial variability of dates (range among sites) was also reduced during warm and dry years, especially for spring events. Climate during previous weeks to phenophases occurrence had the greatest impact on plants, although all events were also affected by climate conditions several months before. Immediate along with delayed climate effects suggest dual triggers in plant phenology. Climatic models accounted for more than 80% of variability in flowering and leaf unfolding dates, and in length of the growing season, but for lower proportions in fruiting and leaf falling. Most part of year‐to‐year changes in dates was accounted for temperature, while precipitation and NAO accounted for <10% of dates' variability. In the case of flowering, insect‐pollinated species were better modelled by climate than wind‐pollinated species. Differences in temporal responses of plant phenology to recent climate change are due to differences in the sensitivity to climate among events and species. Spring events are changing more than autumn events as they are more sensitive to climate and are also undergoing the greatest alterations of climate relative to other seasons. In conclusion, climate change has shifted plant phenology in the Mediterranean region.  相似文献   

16.
Abstract. A link between density-dependent larval competition and adult size of the mosquito Aedes cantans was demonstrated in northern England. Ponds containing high larval densities produced smaller larvae which, in turn, resulted in smaller adults at emergence.
In both 1989 and 1990, parous mosquitoes caught at human bait were larger than nulliparous ones, suggesting that larger mosquitoes are more successful at host location and egg-laying and also that they may be longer lived.
Larger mosquitoes produced larger egg clutches than smaller females: however, there was no difference in the size of eggs laid by large and small females.  相似文献   

17.
Resurveys of historical collecting localities have revealed range shifts, primarily leading edge expansions, which have been attributed to global warming. However, there have been few spatially replicated community-scale resurveys testing whether species'' responses are spatially consistent. Here we repeated early twentieth century surveys of small mammals along elevational gradients in northern, central and southern regions of montane California. Of the 34 species we analysed, 25 shifted their ranges upslope or downslope in at least one region. However, two-thirds of ranges in the three regions remained stable at one or both elevational limits and none of the 22 species found in all three regions shifted both their upper and lower limits in the same direction in all regions. When shifts occurred, high-elevation species typically contracted their lower limits upslope, whereas low-elevation species had heterogeneous responses. For high-elevation species, site-specific change in temperature better predicted the direction of shifts than change in precipitation, whereas the direction of shifts by low-elevation species was unpredictable by temperature or precipitation. While our results support previous findings of primarily upslope shifts in montane species, they also highlight the degree to which the responses of individual species vary across geographically replicated landscapes.  相似文献   

18.

Background

Malaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l.

Methods

To investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays.

Results

Anopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested.

Conclusions

The kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.  相似文献   

19.
Current predictions regarding the ecological consequences of climate change on animal populations are generally autecological and species-specific, and/or non-mechanistic extrapolations of recent short-term patterns. To better understand and predict the effects of climate change on the distribution of species and the abundance of populations we offer a novel, broad theoretical framework. Climate-induced changes in trophic structure may actually be more predictable than effects on individual species. The logic is that there are general differences in climatic sensitivity among trophic levels – specifically, that as one moves up trophic levels, there is an increase in the temperature sensitivity of vital rates. More precisely, we provide: (1) a formal mathematical definition of distribution limits that is both operational and conceptual, introducing the concept DL50, defined as the geographic and climatic isoline representing an equilibrium occupancy of half of the suitable habitats; (2) a matrix of the possible changes in trophic structure from climate change and the general theoretical consequences; and (3) a new idea that predicts broad effects of climatic warming on trophic systems. Our intention is to help meet the challenge of developing and testing general theoretical models that can predict which species will be winners and losers in ecological time, which evolutionary traits will be favoured or selected against, and what will be consequences for ecosystem structure and function.  相似文献   

20.
The present study was designed to determine if dietary protein can alter uncoupling protein (UCP) expression in swine, as has been shown in rats, and attempt to identify the mechanism. Eight pigs (~ 50 kg body mass) were fed an 18% crude protein (CP) diet while another eight pigs were switched to a diet containing 12% crude protein (CP) and fed these diets until 110 kg body mass. The outer (OSQ) and middle (MSQ) subcutaneous adipose tissues, liver, leaf fat, longissimus (LM), red portion of the semitendinosus (STR) and the white portion of the ST (STW) were analyzed for gene expression by real-time PCR. Feeding of 12% CP did not alter growth or carcass composition, relative to 18% CP (P > 0.05). Serum growth hormone, non-esterified fatty acids, triglycerides and urea nitrogen were reduced with the feeding of 12% CP (P < 0.05). The UCP2 mRNA abundance was reduced in LM, STR, MSQ and OSQ with feeding of 12% CP (P < 0.05), as was UCP3 mRNA abundance in MSQ and STW (P < 0.01). Peroxisome proliferation activated receptor α (PPARα) and PPARγ were reduced in MSQ and STR (P < 0.05) with feeding 12% CP as was the PPARα regulated protein, acyl CoA oxidase (ACOX, P < 0.05). These data suggest that feeding 12% CP relative to 18% CP reduces serum NEFA, which reduces PPARα and PPARγ expression and consequently reduces UCP2 lipoperoxidation in OSQ and STR and also reduced UCP3 associated fatty acid transport in MSQ and STW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号