首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anil K. Padyana  S. Ramakumar 《BBA》2006,1757(3):161-165
Modeling of excitation transfer pathways have been carried out for the structure of Spirulina platensis C-phycocyanin. Calculations by Förster mechanism using the crystal structure coordinates determined in our laboratory indicate ultra-fast lateral energy transfer rates between pairs of chromophores attached to two adjacent hexamer disks. The pairwise transfer times of the order of a few pico-seconds correspond to resonance transitions between peripheral β155 chromophores. A quantitative lateral energy transfer model for C-phycocyanin light-harvesting antenna rods that is suggestive to its native structural organization emerges from this study.  相似文献   

2.
The crystal structure of the light-harvesting protein-pigment complex C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum has been determined by Patterson search techniques on the basis of the molecular model of C-phycocyanin from Mastigocladus laminosus. The crystal unit cell (space group P321) contains three (alpha beta)6 hexamers centred on the crystallographic triads. The hexamer at the origin of the unit cell exhibits crystallographic 32 point symmetry. The other two hexamers (independent of the former) show crystallographic 3-fold and local 2-fold symmetry. The 3-fold redundancy of the asymmetric unit of the crystal cell was used in the refinement process, which proceeded by cyclic averaging, model building and energy-restrained crystallographic refinement. Refinement was terminated with a conventional crystallographic R-value of 0.20 with data to 2.5 A resolution. The two independent hexamers of the unit cell are identical within the limits of error at all levels of aggregation. Two trimers, which closely resemble the M. laminosus C-phycocyanin, are aggregated head-to-head to form the hexamer. Both trimers fit complementarily and are held together by polar and ionic interactions. Conservation of the amino acid residues involved in protein-chromophore and intermonomer interactions suggests common structural features for all biliproteins. Most probably, the hexameric aggregation form present in the crystals is closely related to the discs of native phycobilisome rods. All tetrapyrrole chromophores are extended but with different geometries enforced by different protein surroundings. In particular, interactions of the propionic side-chains with arginine residues and of the pyrrole nitrogen atoms with aspartate residues define configuration and conformation of the chromophores. Relative chromophore distances and orientations have been determined and a preferential pathway for the energy transfer suggested. Accordingly, within a hexamer the absorbed energy is funneled to chromophore B84 and then transduced via B84 chromophores along the phycobilisome rods.  相似文献   

3.
Modeling of excitation transfer pathways have been carried out for the structure of Spirulina platensis C-phycocyanin. Calculations by F?rster mechanism using the crystal structure coordinates determined in our laboratory indicate ultra-fast lateral energy transfer rates between pairs of chromophores attached to two adjacent hexamer disks. The pairwise transfer times of the order of a few pico-seconds correspond to resonance transitions between peripheral beta155 chromophores. A quantitative lateral energy transfer model for C-phycocyanin light-harvesting antenna rods that is suggestive to its native structural organization emerges from this study.  相似文献   

4.
McCree KJ 《Plant physiology》1972,49(5):704-706
Calculations of the errors involved in measuring “photo-synthetically active radiation” in different ways are based on the assumption that the photosynthetic rate of a leaf in “white” light is equal to the sum of the products of (a) the photo-synthetic rate per unit of incident energy flux (action spectrum) by (b) the spectral energy flux distribution of the white light, the products being summed over all wavelengths at which the action spectrum is greater than zero. The calculations are valid only if the effects of different wavelengths are independent and additive. Although interactions are well documented in photo-synthesis (“enhancement”), tests showed that the photosynthetic rates of leaves of six species, in four different types of white light, were within ±7% of the rates calculated in this way.  相似文献   

5.
Oligomerization has important functional implications for many membrane proteins. However, obtaining structural insight into oligomeric assemblies is challenging, as they are large and resist crystallization. We focus on proteorhodopsin (PR), a protein with seven transmembrane α-helices that was found to assemble to hexamers in densely packed lipid membrane, or detergent-solubilized environments. Yet, the structural organization and the subunit interface of these PR oligomers were unknown. We used site-directed spin-labeling together with electron spin-resonance lineshape and Overhauser dynamic nuclear polarization analysis to construct a model for the specific orientation of PR subunits within the hexameric complex. We found intersubunit distances to average 16 Å between neighboring 55 residues and that residues 177 are >20 Å apart from each other. These distance constraints show that PR has a defined and radial orientation within a hexamer, with the 55-site of the A-B loop facing the hexamer core and the 177-site of the E-F loop facing the hexamer exterior. Dynamic nuclear polarization measurements of the local solvent dynamics complement the electron spin-resonance-based distance analysis, by resolving whether protein surfaces at positions 55, 58, and 177 are exposed to solvent, or covered by protein-protein or protein-detergent contacts.  相似文献   

6.
Initiation of simian virus 40 (SV40) DNA replication is dependent upon the assembly of two T-antigen (T-ag) hexamers on the SV40 core origin. To further define the oligomerization mechanism, the pentanucleotide requirements for T-ag assembly were investigated. Here, we demonstrate that individual pentanucleotides support hexamer formation, while particular pairs of pentanucleotides suffice for the assembly of T-ag double hexamers. Related studies demonstrate that T-ag double hexamers formed on “active pairs” of pentanucleotides catalyze a set of previously described structural distortions within the core origin. For the four-pentanucleotide-containing wild-type SV40 core origin, footprinting experiments indicate that T-ag double hexamers prefer to bind to pentanucleotides 1 and 3. Collectively, these experiments demonstrate that only two of the four pentanucleotides in the core origin are necessary for T-ag assembly and the induction of structural changes in the core origin. Since all four pentanucleotides in the wild-type origin are necessary for extensive DNA unwinding, we concluded that the second pair of pentanucleotides is required at a step subsequent to the initial assembly process.  相似文献   

7.
A Kinetic Model for the Energy Transfer in Phycobilisomes   总被引:1,自引:0,他引:1       下载免费PDF全文
A kinetic model for the energy transfer in phycobilisome (PBS) rods of Synechococcus 6301 is presented, based on a set of experimental parameters from picosecond studies. It is shown that the enormous complexity of the kinetic system formed by 400-500 chromophores can be greatly simplified by using symmetry arguments. According to the model the transfer along the phycocyanin rods has to be taken into account in both directions, i.e., back and forth along the rods. The corresponding forward rate constants for single step energy transfer between trimeric disks are predicted to be 100-300 ns-1. The model that best fits the experimental data is an asymmetric random walk along the rods with overall exciton kinetics that is essentially trap-limited. The transfer process from the sensitizing to the fluorescing C-PC phycocyanin chromophores (τ ≈ 10 ps) is localized in the hexamers. The transfer from the innermost phycocyanin trimer to the core is calculated to be in the range 36-44 ns-1. These parameters lead to calculated overall rod-core transfer times of 102 and 124 ps for rods containing three and four hexamers, respectively. The model calculations confirm the previously suggested hypothesis that the energy transfer from the rods to the core is essentially described by one dominant exponential function. Extension of the model to heterogeneous PBS rods, i.e., PBS containing also phycoerythrin, is straightforward.  相似文献   

8.
The crystal structure of C-phycocyanin, a light-harvesting phycobiliprotein from cyanobacteria (blue-green algae) Spirulina platensis has been solved by molecular replacement technique. The crystals belong to space group P2(1) with cell parameters a = 107.20, b = 115.40, c = 183.04 A; beta = 90.2 degrees. The structure has been refined to a crystallographic R factor of 19.2% (R(free) = 23.9%) using the X-ray diffraction data extending up to 2.2 A resolution. The asymmetric unit of the crystal cell consists of two (alphabeta)6-hexamers, each hexamer being the functional unit in the native antenna rod of cyanobacteria. The molecular structure resembles that of other reported C-phycocyanins. However, the unique form of aggregation of two (alphabeta)6-hexamers in the crystal asymmetric unit, suggests additional pathways of energy transfer in lateral direction between the adjacent hexamers involving beta155 phycocyanobilin chromophores.  相似文献   

9.
The excited state kinetics of three different allophycocyanin (AP) complexes has been studied by picosecond fluorescence spectroscopy. Both the fluorescence kinetics and the decay-associated fluorescence spectra of the different complexes can be understood on the basis of a structural model for AP which uses (a) an analogy to the known x-ray determined structure of C-phycocyanin, (b) the biochemical analogies of AP and C-phycocyanin, and (c) the biochemical composition of AP-B (AP-681). A model is developed that describes the excited state kinetics as a mixture of internal conversion processes within a coupled exciton pair and energy transfer processes between exciton pairs. We found excited state relaxation times in the range of 13 ps (AP with linker peptide) up to 66 ps (AP-B). The trimeric aggregates AP 660 and AP 665 show one fast relaxation component each, as was expected on the basis of their symmetry properties. The lower symmetry of AP-B (AP-681) gives rise to two fast lifetime components (τ1 = 23 ps and τ2 = 66 ps) which are attributed to internal conversion and/or energy transfer between excitonic states formed by the coupling of symmetrically and spectrally nonequivalent chromophores. It is proposed that the internal conversion between exciton states of strongly coupled chromophores fulfills the requirements of the small energy gap limit. Thus, internal conversion rates in the order of tens of picoseconds are feasible. The influence of the interaction of the linker peptide on the properties of the AP trimer are manifested in the fluorescence kinetics. Lack of the linker peptide in AP 660 gives rise to a heterogeneity in the chromophore conformations and chromophore-chromophore interactions.  相似文献   

10.
Acoustic communication is important for animals with dependent young, particularly when they are spatially separated. Maternal humpback whales (Megaptera novaeangliae) use acoustic calling to help minimize the risk of separation from their young calves during migration. These pairs also use acoustic crypsis to minimize detection by males. How they balance a restricted active space with the need to maintain acoustic contact during periods of separation is not yet understood. Here, we analyzed movement metrics of tagged adult female–calf pairs during migration to identify two behavioral states, “resting/milling” and “travelling.” When travelling, these pairs dived synchronously and exhibited little to no spatial separation. Alternatively, adult females had significantly longer dive durations (p < .01) when resting, and while they spent prolonged times at depth, calves would surface several times independently. This demonstrated that these pairs are frequently separated during periods of rest. We then determined whether the call rates and acoustic levels of these pairs increased with more frequent separation, finding that both adult females and calves significantly increased their call rates, but not levels, when resting. We also found that adult female–calf pairs have a restricted active space, with less than 15% of calls estimated to be detectable beyond 2 km. However, as with call level, detection distance did not differ significantly between the two behavioral states. In summary, adult female–calf pairs maintain successful communication during periods of separation by calling more frequently rather than by producing louder calls. This strategy aids in maintaining acoustic contact while simultaneously limiting detectability by conspecifics.  相似文献   

11.
Polarized fluorescence of rigid double-chromophore complexes with intracomplex energy exchange between chromophores was analyzed, and the formula for the degree of polarization derived for the case of steady-state excitation: P = (3 cos2θ - 1 + 2A)/(3 + cos2θ + 4A). In this formula θ is the angle between the transition dipole moments of chromophores in complexes, and A is the parameter dependent on the spectroscopic features of chromophores and energy migration rates. The case of excitation by a δ-pulse was also analyzed, and a formula for fluorescence polarization kinetics was derived.As an example of the application of the derived formulae, the polarized fluorescence spectra and their picosecond kinetics were calculated for the β-subunits of the blue-green algae Agmenellum quadruplicatum. The results obtained were compared with experimental measurements of Mimuro et al. (1986, Biochim. Biophys. Acta848, 155-166) and found to match these data well.  相似文献   

12.
《BBA》2020,1861(9):148236
Galdieria phlegrea is a polyextremophilic red alga belonging to Cyanidiophyceae. Galdieria phlegrea C-phycocyanin (GpPC), an abundant light-harvesting pigment with an important role in energy capture and transfer to photosystems, is the C-phycocyanin (C-PC) with the highest thermal stability described so far. GpPC also presents interesting antioxidant and anticancer activities. The X-ray structure of the protein was here solved. GpPC is a [(αβ)3]2 hexamer, with the phycocyanobilin chromophore attached to Cys84α, Cys82β and Cys153β. Details of geometry and interaction with solvent of the chromophores are reported. Comparison with the structure of a C-PC in the entire Porphyridium purpureum phycobilisome system reveals that linker polypeptides have a significant effect on the local structure of the chromophores environment. Comparative analyses with the structures of other purified C-PCs, which were carried out including re-refined models of G. sulphuraria C-PC, reveal that GpPC presents a significantly higher number of inter-trimer salt bridges. Notably, the higher number of salt bridges at the (αβ)3/(αβ)3 interface is not due to an increased number of charged residues in this region, but to subtle conformational variations of their side chains, which are the result of mutations of close polar and non-polar residues.  相似文献   

13.
The crystal structure of allophycocyanin from red algae Porphyra yezoensis (APC-PY) at 2.2-A resolution has been determined by the molecular replacement method. The crystal belongs to space group R32 with cell parameters a = b = 105.3 A, c = 189.4 A, alpha = beta = 90 degrees, gamma = 120 degrees. After several cycles of refinement using program X-PLOR and model building based on the electron density map, the crystallographic R-factor converged to 19.3% (R-free factor is 26.9%) in the range of 10.0 to 2.2 A. The r.m.s. deviations of bond length and angles are 0.015 A and 2.9 degrees, respectively. In the crystal, two APC-PY trimers associate face to face into a hexamer. The assembly of two trimers within the hexamer is similar to that of C-phycocyanin (C-PC) and R-phycoerythrin (R-PE) hexamers, but the assembly tightness of the two trimers to the hexamer is not so high as that in C-PC and R-PE hexamers. The chromophore-protein interactions and possible pathway of energy transfer were discussed. Phycocyanobilin 1alpha84 of APC-PY forms 5 hydrogen bonds with 3 residues in subunit 2beta of another monomer. In R-PE and C-PC, chromophore 1alpha84 only forms 1 hydrogen bond with 2beta77 residue in subunit 2beta. This result may support and explain great spectrum difference exists between APC trimer and monomer.  相似文献   

14.
We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as “tumor-educated-macrophages” (Edu) and macrophages harvested from mice without tumors as “naïve-macrophages” (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.  相似文献   

15.
We assessed population structure and the spatio‐temporal pattern of diversification in the Glossy Antshrike Sakesphorus luctuosus (Aves, Thamnophilidae) to understand the processes shaping the evolutionary history of Amazonian floodplains and address unresolved taxonomic controversies surrounding its species limits. By targeting ultraconserved elements (UCEs) from 32 specimens of S. luctuosus, we identified independent lineages and estimated their differentiation, divergence times, and migration rates. We also estimated current and past demographic histories for each recovered lineage. We found evidence confirming that S. luctuosus consists of a single species, comprising at least four populations, with some highly admixed individuals and overall similar levels of migration between populations. We confirmed the differentiation of the Araguaia River basin population (S. l. araguayae) and gathered circumstantial evidence indicating that the taxon S. hagmanni may represent a highly introgressed population between three distinct phylogroups of S. luctuosus. Divergences between populations occurred during the last 1.2 mya. Signs of population expansions were detected for populations attributed to subspecies S. l. luctuosus, but not for the S. l. araguayae population. Our results support that S. luctuosus has had a complex population history, resulting from a high dependence on southeastern “clear water” seasonally flooded habitats and their availability through time. Spatial and demographic expansions toward the western “white water” flooded forests might be related to recent changes in connectivity and availability of these habitats. Our study reinforces the view that isolation due to absence of suitable habitat has been an important driver of population differentiation within Amazonian flooded forests, but also that differences between várzeas (“white water” floodplains, mostly in southwestern Amazonia) and igapós (“clear water” floodplains, especially located in the east) should be further explored as drivers of micro‐evolution for terrestrial species.  相似文献   

16.
The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20–66) were asked to “fly” a series of simulated “cockpit view” instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog–legally unsafe to land) or low risk (medium fog–legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a “land” versus “do not land” decision (CFII: d′ = 3.62±2.52; IFR: d′ = 0.98±1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a “land” versus “do not land” decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97±0.80) compared to Moderate Expertise pilots (1.91±1.16) (p<.05). These findings provide evidence for increased “neural efficiency” in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the “expertise” effect was observed. These data provide evidence that performing “real world” aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.  相似文献   

17.
The Serratia entomophila antifeeding prophage (Afp) is a bullet-shaped toxin-delivery apparatus similar to the R-pyocins of Pseudomonas aeruginosa. Morphologically it resembles the sheathed tail of bacteriophages such as T4, including a baseplate at one end. It also shares features with the type VI secretion systems. Cryo-electron micrographs of tilted Afp specimens (up to 60 degrees) were analyzed to determine the correct cyclic symmetry to overcome the limitation imposed by exclusively side views in nominally untilted specimens. An asymmetric reconstruction shows clear 6-fold cyclic symmetry contrary to a previous conclusion of 4-fold symmetry based on analysis of only the preferred side views (Sen, A., Rybakova, D., Hurst, M. R., and Mitra, A. K. (2010) J. Bacteriol. 192, 4522–4525). Electron tomography of negatively stained Afp revealed right-handed helical striations in many of the particles, establishing the correct hand. Higher quality micrographs of untilted specimens were processed to produce a reconstruction at 2.0-nm resolution with imposed 6-fold symmetry. The helical parameters of the sheath were determined to be 8.14 nm for the subunit rise along and 40.5° for the rotation angle around the helix. The sheath is similar to that of the T4 phage tail but with a different arrangement of the subdomain of the polymerizing sheath protein(s). The central tube is similar to the diameter and axial width of the Hcp1 hexamer of P. aeruginosa type VI secretion system. The tube extends through the baseplate into a needle resembling the “puncture device” of the T4 tail. The tube contains density that may be the toxin and/or a length-determining protein.  相似文献   

18.
As bighead carp Hypophthalmichthys nobilis and silver carp H . molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.  相似文献   

19.
Species of Osmanthus are economically important ornamental trees, yet information regarding their plastid genomes (plastomes) have rarely been reported, thus hindering taxonomic and evolutionary studies of this small but enigmatic genus. Here, we performed comparative genomics and evolutionary analyses on plastomes of 16 of the 28 currently accepted species, with 11 plastomes newly sequenced. Phylogenetic studies identified four main lineages within the genus that are here designated the: “Caucasian Osmanthus” (corresponding to O. decorus), “Siphosmanthus” (corresponding to O. sect. Siphosmanthus), “O. serrulatus + O. yunnanensis,” and “Core Osmanthus: (corresponding to O. sect. Osmanthus + O. sect. Linocieroides). Molecular clock analysis suggested that Osmanthus split from its sister clade c. 15.83 Ma. The estimated crown ages of the lineages were the following: genus Osmanthus at 12.66 Ma; “Siphosmanthus” clade at 5.85 Ma; “O. serrulatus + O. yunnanensis” at 4.89 Ma; and “Core Osmanthus: clade at 6.2 Ma. Ancestral state reconstructions and trait mapping showed that ancestors of Osmanthus were spring flowering and originated at lower elevations. Phylogenetic principal component analysis clearly distinguished spring‐flowering species from autumn‐flowering species, suggesting that flowering time differentiation is related to the difference in ecological niches. Nucleotide substitution rates of 80 common genes showed slow evolutionary pace and low nucleotide variations, all genes being subjected to purifying selection.  相似文献   

20.
Solutions of C-phycocyanin of very low concentrations were examined by sedimentation-velocity studies in the Spinco model E ultracentrifuge equipped with a photoelectric scanning system and a monochromator. At sufficiently low concentrations complete disaggregation from the hexamer to the monomer was observed. The equilibrium constant of monomer to hexamer was estimated to be approx. 10(30). For studies of aggregation over the complete range of concentration, C-phycocyanins from Phormidium luridum and Lyngbya sp. were used. Sedimentation-velocity studies at high concentration with schlieren optics are reported for C-phycocyanins from Anabaena variabilis and Lyngbya sp. The pH-dependence of aggregation and the temperature-dependence of trimer-hexamer equilibrium for phycocyanins from these algae were found to be similar to those of other C-phycocyanins. The principal feature of the pH-dependence is the dominance of hexamers at the isoelectric point. Increasing temperature increased the amount of hexamer and decreased the amount of trimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号