首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Adaptation of the annual plant Senecio vulgaris to ruderal and agricultural habitats was investigated. We expected S. vulgaris to be adapted to the agricultural habitat through nutrient-specific differentiation of relatively few genotypes responding to the generally high homogenous nutrient levels at the agricultural habitat caused by constant fertilization. To assess adaptation of S. vulgaris, vegetative and reproductive responses of seed families from various populations of agricultural and ruderal habitats, grown in the greenhouse at high and low nutrient levels, were compared. Data were analyzed with a three-level nested ANOVA based on the levels habitat, population, and family. A significant habitat effect indicated that S. vulgaris from ruderal and agricultural habitats were genetically different with plants from the agricultural habitat having larger leaves and a higher reproduction. A significant habitat by nutrient effect showed a stronger response of reproduction to nutrients at the agricultural habitat, suggesting that genetic differentiation among habitats is nutrient-specific. Contrary to expectations, only the agricultural habitat showed genetic diversity of S. vulgaris. Results suggest that nutrient levels at the agricultural habitat are more heterogeneous as generally proposed leading to a relatively high genetic variation.  相似文献   

2.
Considerable debate has accompanied efforts to integrate the selective impacts of environmental stresses into models of life-history evolution. This study was designed to determine if different environmental stresses have consistent phenotypic effects on life-history characters and whether selection under different stresses leads to consistent evolutionary responses. We created lineages of a wild mustard (Sinapis arvensis) that were selected for three generations under five stress regimes (high boron, high salt, low light, low water, or low nutrients) or under near-optimal conditions (control). Full-sibling families from the six selection histories were divided among the same six experimental treatments. In that test generation, lifetime plant fecundity and six phenotypic traits were measured for each plant. Throughout this greenhouse study, plants were grown individually and stresses were applied from the early seedling stage through senescence. Although all stresses consistently reduced lifetime fecundity and most size- and growth-related traits, different stresses had contrasting effects on flowering time. On average, stress delayed flowering compared to favorable conditions, although plants experiencing low nutrient stress flowered earliest and those experiencing low light flowered latest. Contrary to expectations of Grime's triangle model of life-history evolution, this ruderal species does not respond phenotypically to poor environments by flowering earlier. Most stresses enhanced the evolutionary potential of the study population. Compared with near-optimal conditions, stresses tended to increase the opportunity for selection as well as phenotypic variance, although both of these quantities were reduced in some stresses. Rather than favoring traits characteristic of stress tolerance, such as slow growth and delayed reproduction, phenotypic selection favored stress-avoidance traits: earlier flowering in all five stress regimes and faster seedling height growth in three stresses. Phenotypic correlations reinforced direct selection on these traits under stress, leading to predicted phenotypic change under stress, but no significant selection in the control environment. As a result of these factors, selection under stress resulted in an evolutionary shift toward earlier flowering. Environmental stresses may drive populations of ruderal plant species like S. arvensis toward a stress-avoidance strategy, rather than toward stress tolerance. Further studies will be needed to determine when selection in stressful environments leads to these alternative life-history strategies.  相似文献   

3.
Divergent natural selection is considered an important force in plant evolution leading to phenotypic differentiation between populations exploiting different environments. Extending an earlier greenhouse study of population differentiation in the selfing annual plant Senecio vulgaris, we estimated the degree of population divergence in several quantitative traits related to growth and life history and compared these estimates with those based on presumably neutral molecular markers (amplified fragment length polymorphisms; AFLPs). This approach allowed us to disentangle the effects of divergent selection from that of other evolutionary forces (e.g. genetic drift). Five populations were examined from each of two habitat types (ruderal and agricultural habitats). We found a high proportion of total genetic variance to be among populations, both for AFLP markers (phiST = 0.49) and for quantitative traits (range of QST: 0.26-0.77). There was a strong correlation between molecular and quantitative genetic differentiation between pairs of populations (Mantel's r = 0.59). However, estimates of population differentiation in several quantitative traits exceeded the neutral expectation (estimated from AFLP data), suggesting that divergent selection contributed to phenotypic differentiation, especially between populations from ruderal and agricultural habitats. Estimates of within-population variation in AFLP markers and quantitative genetic were poorly correlated, indicating that molecular marker data may be of limited value to predict the evolutionary potential of populations of S. vulgaris.  相似文献   

4.
The evolution of plant defensive traits in response to selection pressures imposed by herbivores is central to co-evolutionary theory. To demonstrate the role of herbivores as selective agents on plant resistance there must be variability in plant resistance to herbivores within a plant population. This variability must be under genetic control, and the variability in plant resistant traits and consequently herbivore damage to plants must reflect variability in plant fitness. We used a common eucalypt species, Eucalyptus globulus, and two major mammalian herbivores, the common brushtail possum (Trichosurus vulpecula) and the red-bellied pademelon (Thylogale billardierii), as a system to investigate intraspecific variation in plant resistance to mammalian herbivores and to investigate if this variation has a genetic basis. We measured mammalian browsing damage on 2,302 individual trees of E. globulus, from 563 families derived from range-wide native stand seed collections of known pedigree and grown in a common environment field trial. Using a selection of trees from the field trial we then conducted a feeding trial with captive herbivores to assess if the genetic variation in plant resistance in the field was reflected in feeding preferences of captive animals, as measured by relative intake. Results from the field trial showed significant genetic variation in plant resistance amongst races, localities and amongst different families. These results were consolidated in the captive trial with similar trends in genetic variation among E. globulus localities. Dry matter intake of foliage by Trichosurus vulpecula was consistently greater than that by Thylogale billardierii; however, the intraspecific preferences of the two herbivores were significantly correlated.  相似文献   

5.
Riddle RA  Dawson PS  Zirkle DF 《Genetics》1986,113(2):391-404
The hypothesis that a component of genetic variation for polygenic fitness traits is maintained by environmental heterogeneity was tested using an experimental system involving two species of flour beetles, Tribolium castaneum and T. confusum. Replicated populations of each species from a number of environmental treatments were analyzed for various fitness components following almost 60 generations of natural selection. Environmental differences consisted of flours of cereals commonly invaded by natural populations of these insects.—Tests for adaptation to environments were based on experiments in which populations were reared factorially on each flour, such that population treatment x flour interactions could be detected. Measurements were made of survival, growth rate, larval weight, pupal weight, developmental time, fecundity of individuals at low density and fecundity and cannibalism at high density in both fresh and conditioned media.—Flour differences were found to have significant effects on most traits. Evidence for significant genetic variation and significant genotype x environment interaction was also found. However, no evidence could be found to support the hypothesis that genetic variation was maintained by environmental heterogeneity in food resources. The absence of adaptation to the experimental treatments despite the presence of genetic variation in fitness components suggests that pleiotropy may assume an important role in determining net fitness values of polygenes.  相似文献   

6.
One of the major unanswered questions in the study of global amphibian declines is why only some species or populations suffer declines. A possible explanation is that species and populations vary in the genetic basis of their tolerance to environmental stress such as chemical contamination. The presence of genetic variation in tolerance to chemicals and in fitness traits of amphibians is essential for persistence of species populations through survival and successful reproduction in contaminated environments. We tested for the presence of genetic variation in the tolerance of amphibian larvae to the insecticide carbaryl using gray treefrog tadpoles (Hyla versicolor). We also assessed whether tolerance of tadpoles is negatively associated with larval performance traits directly related to adult fitness, thereby providing a test of the "cost of tolerance" hypothesis. Our results demonstrate significant variation in tolerance of tadpoles to the insecticide carbaryl within a single population of the gray treefrog, Hyla versicolor. Our half-sibship design indicates that variation among sires explains a significant amount of the variation in chemical tolerance thereby suggesting a heritability genetic basis. Our results also indicate the presence of a fitness tradeoff with tolerance to the chemical carbaryl being negatively correlated, or traded off, with survival of tadpoles reared in the field in the absence of the chemical. Knowledge of genetic tradeoffs with chemical tolerance under realistic environmental conditions will be important for predicting the rate of adaptation and potential for persistence of species. Finally, the partitioning of environmental and genetic variation in tolerance to chemicals is critical to identifying which species are most susceptible, the amount of genetic variance present, the potential for adaptation to contaminants, and the presence of fitness tradeoffs. Such information is necessary to clearly understand the persistence of populations, and ultimately, the processes leading to species declines.  相似文献   

7.
Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait–environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait–environment correlations and literature‐based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient‐wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.  相似文献   

8.
The factors which may influence temporal and spatial variation in plant arbuscular mycorrhizal (AM) colonization and propagule occurrence were evaluated in a Portuguese salt marsh poor in plant diversity. Two distinct sites were studied: a more-flooded (low marsh) and a less-flooded zone (high marsh). AM root colonization, AM fungal spore number and inoculum potential, soil edaphic parameters and tidal flooding time periods were analysed. Levels of AM colonization were considerable in Aster tripolium and Inula crithmoides but very low in Puccinellia maritima and non-existent in Spartina maritima, Halimione portulacoides, Arthrocnemum fruticosum and Arthrocnemum perenne. Fungal diversity was very low, with Glomus geosporum dominant at both marsh zones. Colonization showed no spatial variation within marsh zones but temporal variation was observed in the high marsh, dependent on plant phenological phases. In the low marsh, no significantly seasonal variation was observed. Apparently, plant phenological events were diluted by stressful conditions (e.g. flooding, salinity). Spore density was significantly different between marsh zones and showed temporal variation in both zones. This study showed that distribution of mycorrhizas in salt marsh is more dependent on host plant species than on environmental stresses.  相似文献   

9.
Resource allocation to growth, reproduction, and body maintenance varies within species along latitudinal gradients. Two hypotheses explaining this variation are local adaptation and counter‐gradient variation. The local adaptation hypothesis proposes that populations are adapted to local environmental conditions and are therefore less adapted to environmental conditions at other locations. The counter‐gradient variation hypothesis proposes that one population out performs others across an environmental gradient because its source location has greater selective pressure than other locations. Our study had two goals. First, we tested the local adaptation and counter‐gradient variation hypotheses by measuring effects of environmental temperature on phenotypic expression of reproductive traits in the burying beetle, Nicrophorus orbicollis Say, from three populations along a latitudinal gradient in a common garden experimental design. Second, we compared patterns of variation to evaluate whether traits covary or whether local adaptation of traits precludes adaptive responses by others. Across a latitudinal range, N. orbicollis exhibits variation in initiating reproduction and brood sizes. Consistent with local adaptation: (a) beetles were less likely to initiate breeding at extreme temperatures, especially when that temperature represents their source range; (b) once beetles initiate reproduction, source populations produce relatively larger broods at temperatures consistent with their local environment. Consistent with counter‐gradient variation, lower latitude populations were more successful at producing offspring at lower temperatures. We found no evidence for adaptive variation in other adult or offspring performance traits. This suite of traits does not appear to coevolve along the latitudinal gradient. Rather, response to selection to breed within a narrow temperature range may preclude selection on other traits. Our study highlights that N. orbicollis uses temperature as an environmental cue to determine whether to initiate reproduction, providing insight into how behavior is modified to avoid costly reproductive attempts. Furthermore, our results suggest a temperature constraint that shapes reproductive behavior.  相似文献   

10.
Growth and reproduction in higher plants depend on meristems, which have three developmental fates. A meristem can become reproductive, but doing so terminates its activity, it can differentiate vegetatively, or it can remain quiescent for extended periods. The first two fates are mutually exclusive, and only the second leads to the production of additional meristems for subsequent growth and reproduction. In Polygonum arenastrum (frequently referred to as P. aviculare in North American Floras), an annual species lacking quiescent meristems, a quantitative genetic analysis of inbred full-sibling families revealed genetic variation in the developmental pattern of axillary meristem commitment to vegetative growth versus reproduction. Developmental variation resulted in family differences in the age of first reproduction, in age-specific fecundity and growth, and in final plant size and reproductive output. Furthermore, there were strong negative genetic correlations between age-specific growth and fecundity. Early commitment of meristems to reproduction favors high early fecundity, but reduces the number of meristems available for vegetative differentiation, and leads to lowered growth rates and fecundity later in life, when meristems are limiting. Conversely, meristem commitment to vegetative growth early in life results in low early fecundity but high late fecundity and growth. Meristem limitation, like resource limitation, is a proximate mechanism that generates trade-offs between life history traits. Differences between meristem limitation and resource limitation are discussed. Meristem limitation leads automatically to a senescent life history because of the determinate fate of reproductive meristems. Developmental characters were also found to be genetically correlated with metamer characters (leaf size, internode length) and seed size in this selfing species. The pattern of correlation is suggestive of selection for particular suites of life history and morphological characters.  相似文献   

11.
Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history "balance" between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations.  相似文献   

12.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

13.
Several studies have found genetic variation in plant resistance to herbivory. One of the explanations suggested for the observed intermediate levels of resistance are the costs of resistance, i.e., negative genetic correlations between resistance and other fitness components that may constrain the evolution of resistance. We studied the cost of herbivore resistance by investigating the genetic correlations between resistance traits and plant growth traits, and between resistance to insect and mammalian herbivores in cloned saplings of silver birch, Betula pendula. We used the performance of a geometrid moth, Epirrita autumnata, as an indicator of insect resistance. The numbers of resin droplets at the base and at the tip of the saplings correlate with mammalian resistance, and were thus used here as indicators of vole and hare resistance, respectively. We have previously observed genetic variation in these resistance traits. Further, we examined the correlations between several groups of secondary chemicals and plant growth traits. Finally, to reveal the effect of environmental factors on the trade-offs mentioned above, we investigated the correlations in saplings that were grown at two nutrient levels. We found significant negative correlations between indices of constitutive insect resistance and relative height growth in non-fertilized saplings, indicating cost of constitutive insect resistance. The two groups of secondary chemicals that have been shown to correlate strongly with constitutive insect resistance, i.e., condensed tannins and flavonol glycosides (especially myricetin glycosides), had different genetic correlations with plant traits; the concentration of condensed tannins did not correlate negatively with any of the plant traits, whereas the concentration of flavonol glycosides correlated negatively with plant height. Insect and mammalian resistance did not correlate negatively, indicating no ecological trade-offs.  相似文献   

14.
In the semi-desert environment of the Mu Us Sandland, the vegetation is composed chiefly of shrubs and semi-shrubs, coverage normally amounting to 30-40%. However, an exception can be found in the community of Sabina vulgaris Antoine, an evergreen shrub, which tends to grow so densely that it covers the sand dunes completely. Previous research has indicated that the high density of Sabina is parallelled by the very low transpiration rate. Based on anatomical and scanning electronic microscopic observations, this paper also points out that two structural features should play an important role in the potential mechanism of water conservation in this plant. First, a low stomatal density in S. vulgaris can lead to a high stomatal resistance and low transpiration. Second, the morphological feature of S. vulgaris leaves being tightly pressed to the stems might be a structural feature of water conservation, because in this way the leaf side bearing more (and mostly larger) stomatal pores could be protected from direct high radiation, while the side with fewer (and mostly smaller) pores (the outer side) is exposed to the dry desert air.  相似文献   

15.
Physiological traits that control the uptake of carbon dioxide and loss of water are key determinants of plant growth and reproduction. Variation in these traits is often correlated with environmental gradients of water, light, and nutrients, suggesting that natural selection is the primary evolutionary mechanism responsible for physiological diversification. Responses to selection, however, can be constrained by the amount of standing genetic variation for physiological traits and genetic correlations between these traits. To examine the potential for constraint on adaptive evolution, we estimated the quantitative genetic basis of physiological trait variation in one population of each of two closely related species (Lobelia siphilitica and L. cardinalis). Restricted maximum likelihood analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for seven traits associated with carbon and water relations. We detected significant genetic variation for all traits in L. siphilitica, suggesting that carbon-gain and water-use traits could evolve in response to natural selection in this population. In particular, narrow-sense heritabilities for photosynthetic rate (A), stomatal conductance (gs), and water-use efficiency (WUE) in our L. siphilitica population were high relative to previous studies in other species. Although there was significant narrow-sense heritability for A in L. cardinalis, we detected little genetic variation for traits associated with water use (gs and WUE), suggesting that our population of this species may be unable to adapt to drier environments. Despite being tightly linked functionally, the genetic correlation between A and gs was not strong and significant in either population. Therefore, our L. siphilitica population would not be genetically constrained from evolving high A (and thus fixing more carbon for growth and reproduction) while also decreasing gs to limit water loss. However, a significant negative genetic correlation existed between WUE and plant size in L. siphilitica, suggesting that high WUE may be negatively associated with high fecundity. In contrast, our results suggest that any constraints on the evolution of photosynthetic and stomatal traits of L. cardinalis are caused primarily by a lack of genetic variation, rather than by genetic correlations between these functionally related traits.  相似文献   

16.
Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment‐specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2‐5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.  相似文献   

17.
Spatial variation in environmental conditions can lead to local adaptation of plant populations, particularly if gene flow among populations is low. Many studies have investigated adaptation to contrasting environmental conditions, but little is known about the spatial scale of adaptive evolution. We studied population differentiation and local adaptation at two spatial scales in the monocarpic grassland perennial Carlina vulgaris. We reciprocally transplanted seedlings among five European regions (northwestern Czech Republic, central Germany, Luxembourg, southern Sweden and northwestern Switzerland) and among populations of different sizes within three of the regions. We recorded survival, growth and reproduction over three growing periods. At the regional scale, several performance traits and the individual fitness of C. vulgaris were highest if the plants were grown in their home region and they decreased with increasing transplant distance. The effects are likely due to climatic differences that increased with the geographical distance between regions. At the local scale, there were significant interactions between the effects of the population of origin and the transplant site, but these were not due to an enhanced performance of plants at their home site and they were not related to the geographical or environmental distance between the site of origin and the transplant site. The size of the population of origin did not influence the strength of local adaptation. The results of our study suggest that C. vulgaris consists of regionally adapted genotypes, and that distance is a good predictor of the extent of adaptive differentiation at large scales ( > 200 km) but not at small scales. We conclude that patterns of local adaptation should be taken into account for the efficient preservation of genetic resources, when assessing the status of a plant species and during conservation planning.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
While it is known that genetic variation for photosynthetic and growth traits exists in natural populations, the functional significance of this variation remains unclear, particularly for photosynthetic traits. To test the hypothesis that photosynthetic rate has direct effects on reproduction as well as contributing indirectly to reproduction through effects on growth, we compared wild-type Amaranthus hybridus families to those with a single gene mutation that confers a lower photosynthetic rate. Wild-type and photosynthetic-mutant families were grown in competitive and non-competitive environments and we compared size, biomass allocation, architecture, and reproduction at three developmental stages. To assess the contributions of individual growth traits to reproduction, we calculated covariances between standardized traits and relative fitness (selection differentials), and compared selection between the two biotypes. Finally, we used path analysis to calculate the indirect effects of photosynthetic rate on fitness through growth. The size, allocation, and architecture of photosynthetic mutants did not differ from those of the wild type in either the competitive or non-competitive environment, with the exception that they were taller by the last developmental stage. However, the reproductive biomass of the photosynthetic mutants was significantly reduced compared to the wild type. In the competitive environment, the wild type achieved greater fitness because, while similar in size to the mutants, at any given size it produced more reproductive biomass. This suggests that photosynthetic rate affected the linkage between plant size and reproduction and is evidence of an indirect contribution to fitness. In the non-competitive environment, there were fewer differences in selection differentials between the two plant genotypes, suggesting fewer indirect effects. Path analysis showed that variation in photosynthetic biotype had indirect effects on reproductive biomass, via growth traits, and that there were no direct effects. Photosynthetic rate appears to have fitness consequences primarily through multiple contributions to growth throughout development. Received: 27 March 1998 / Accepted: 28 August 1998  相似文献   

19.
In the South American temperate evergreen rainforest (Valdivian forest), invasive plants are mainly restricted to open sites, being rare in the shaded understory. This is consistent with the notion of closed-canopy forests as communities relatively resistant to plant invasions. However, alien plants able to develop shade tolerance could be a threat to this unique forest. Phenotypic plasticity and local adaptation are two mechanisms enhancing invasiveness. Phenotypic plasticity can promote local adaptation by facilitating the establishment and persistence of invasive species in novel environments. We investigated the role of these processes in the recent colonization of Valdivian forest understory by the perennial alien herb Prunella vulgaris from nearby populations in open sites. Using reciprocal transplants, we found local adaptation between populations. Field data showed that the shade environment selected for taller plants and greater specific leaf areas. We found population differentiation and within-population genetic variation in both mean values and reaction norms to light variation of several ecophysiological traits in common gardens from seeds collected in sun and shade populations. The colonization of the forest resulted in a reduction of plastic responses to light variation, which is consistent with the occurrence of genetic assimilation and suggests that P. vulgaris individuals adapted to the shade have reduced probabilities to return to open sites. All results taken together confirm the potential for rapid evolution of shade tolerance in P. vulgaris and suggest that this alien species may pose a threat to the native understory flora of Valdivian forest.  相似文献   

20.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号