首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative refolding of the dimeric alkaline protease inhibitor (API) from Streptomyces sp. NCIM 5127 has been investigated. We demonstrate here that both isomerase and chaperone functions of the protein folding catalyst, protein disulfide isomerase (PDI), are essential for efficient refolding of denatured-reduced API (dr-API). Although the role of PDI as an isomerase and a chaperone has been reported for a few monomeric proteins, its role as a foldase in refolding of oligomeric proteins has not been demonstrated hitherto. Spontaneous refolding and reactivation of dr-API in redox buffer resulted in 45% to 50% reactivation. At concentrations <0.25 microM, reactivation rates and yields of dr-API are accelerated by catalytic amounts of PDI through its isomerase activity, which promotes disulfide bond formation and rearrangement. dr-API is susceptible to aggregation at concentrations >25 microM, and a large molar excess of PDI is required to enhance reactivation yields. PDI functions as a chaperone by suppressing aggregation and maintains the partially unfolded monomers in a folding-competent state, thereby assisting dimerization. Simultaneously, isomerase function of PDI brings about regeneration of native disulfides. 5-Iodoacetamidofluorescein-labeled PDI devoid of isomerase activity failed to enhance the reactivation of dr-API despite its intact chaperone activity. Our results on the requirement of a stoichiometric excess of PDI and of presence of PDI in redox buffer right from the initiation of refolding corroborate that both the functions of PDI are essential for efficient reassociation, refolding, and reactivation of dr-API.  相似文献   

2.
Protein disulfide isomerase (PDI) is a multifunctional polypeptide that acts as a subunit in the animal prolyl 4-hydroxylases and the microsomal triglyceride transfer protein, and as a chaperone that binds various peptides and assists their folding. We report here that deletion of PDI sequences corresponding to the entire C-terminal domain c, previously thought to be critical for chaperone activity, had no inhibitory effect on the assembly of recombinant prolyl 4-hydroxylase in insect cells or on the in vitro chaperone activity or disulfide isomerase activity of purified PDI. However, partially overlapping critical regions for all these functions were identified at the C-terminal end of the preceding thioredoxin-like domain a'. Point mutations introduced into this region identified several residues as critical for prolyl 4-hydroxylase assembly. Circular dichroism spectra of three mutants suggested that two of these mutations may have caused only local alterations, whereas one of them may have led to more extensive structural changes. The critical region identified here corresponds to the C-terminal alpha helix of domain a', but this is not the only critical region for any of these functions.  相似文献   

3.
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a chaperone and catalyzes the formation and rearrangement of disulfide bonds in proteins. Domain c-(463-491), containing 18 acidic residues, is an interesting and important C-terminal extension of PDI. In this study, the PDI mutant abb'a', in which domain c is truncated, was used to investigate the relationship between the C-terminal structure and chaperone function. Reactivation and light-scattering experiments show that both wild-type PDI and abb'a' interact with lactate dehydrogenase (LDH, EC 1.1.1.27), which tends to self-aggregate during reactivation. The interaction enhances reactivation of LDH and reduces aggregation. According to these results, it seems as if domain c might be dispensable to the chaperone function of PDI. However, abb'a' is prone to self-aggregation and causes increased aggregation of LDH during thermal denaturation. In contrast, wild-type PDI remains active as a chaperone under these conditions and prevents self-aggregation of LDH. Furthermore, measurements of intrinsic fluorescence and difference absorbance during denaturation show that abb'a' is much more labile to heat or guanidine hydrochloride denaturation than wild-type PDI. This suggests that domain c is required for the stabilization and maintenance of the chaperone function of PDI under extreme conditions.  相似文献   

4.
In the process of screening of proteins binding to ribostamycin in bovine liver using the affinity column chromatography, we found that ribostamycin inhibited the chaperone activity of protein disulfide isomerase (PDI), but it did not inhibit the isomerase activity. PDI was identified by SDS-PAGE, Western blotting, and N-terminal amino acid sequence analysis. A 100:1 molar ratio of ribostamycin to PDI was almost sufficient to completely inhibit the chaperone activity of PDI. The binding affinity of ribostamycin to purified bovine PDI was determined by the Biacore system, which gave a K(D) value of 3.19 x 10(-4) M. This suggests that ribostamycin binds to region distinct from the CGHC motif of PDI. This is the first report to describe the inhibitor of the chaperone activity of PDI.  相似文献   

5.
Protein-disulfide isomerase (PDI) catalyzes the formation, rearrangement, and breakage of disulfide bonds and is capable of binding peptides and unfolded proteins in a chaperone-like manner. In this study we examined which of these functions are required to facilitate efficient refolding of denatured and reduced proinsulin. In our model system, PDI and also a PDI mutant having only one active site increased the rate of oxidative folding when present in catalytic amounts. PDI variants that are completely devoid of isomerase activity are not able to accelerate proinsulin folding, but can increase the yield of refolding, indicating that they act as a chaperone. Maximum refolding yields, however, are only achieved with wild-type PDI. Using genistein, an inhibitor for the peptide-binding site, the ability of PDI to prevent aggregation of folding proinsulin was significantly suppressed. The present results suggest that PDI is acting both as an isomerase and as a chaperone during folding and disulfide bond formation of proinsulin.  相似文献   

6.
The SlyD (sensitive to lysis D) protein of Escherichia coli is a folding enzyme with a chaperone domain and a prolyl isomerase domain of the FK506 binding protein type. Here we investigated how the two domains and their interplay are optimized for function in protein folding. Unfolded protein molecules initially form a highly dynamic complex with the chaperone domain of SlyD, and they are then transferred to the prolyl isomerase domain. The turnover number of the prolyl isomerase site is very high and guarantees that, after transfer, prolyl peptide bonds in substrate proteins are isomerized very rapidly. The Michaelis constant of catalyzed folding reflects the substrate affinity of the chaperone domain, and the turnover number is presumably determined by the rate of productive substrate transfer from the chaperone to the prolyl isomerase site and by the intrinsic propensity of the refolding protein chain to leave the active site with the native prolyl isomer. The efficiency of substrate transfer is high because dissociation from the chaperone site is very fast and because the two sites are close to each other. Protein molecules that left the prolyl isomerase site with an incorrect prolyl isomer can rapidly be re-bound by the chaperone domain because the association rate is very high as well.  相似文献   

7.
To elucidate the function of protein disulfide isomerase (PDI), we screened for PDI-binding proteins in a bovine liver extract using affinity column chromatography. One of the binding proteins was identified by SDS-PAGE and N-terminal amino acid sequence analysis to be cyclophilin B (Cyp B). Use of the BIACORE system revealed that purified bovine Cyp B bound specifically to bovine PDI with a K(D) value of 1.19 x 10(-5) M. Interestingly, the binding affinity between PDI and Cyp B was strengthened by preincubation of the Cyp B with cyclosporin A (CsA), yielding a K(D) value of 3.67 x 10(-6) M. Although the interaction between PDI and Cyp B affected neither the isomerase activity of PDI nor the peptidyl-prolyl cis-trans isomerase activity of Cyp B, Cyp B increased the chaperone activity of PDI. However, the complex of Cyp B and CsA completely inhibited the chaperone activity of PDI. Thus, PDI and Cyp B appear to cooperate with each other to regulate the functional expression of proteins in vivo.  相似文献   

8.
X Lu  H F Gilbert  J W Harper 《Biochemistry》1992,31(17):4205-4210
Protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds by increasing the rate of disulfide bond rearrangements which normally occur during the folding process. The amino acid sequences of the N- and C-terminal redox active sites (PWCGHCK) in PDI are completely conserved from yeast to man and display considerable identity with the redox-active center of thioredoxin (EWCGPCK). Available data indicate that the two thiol/disulfide centers of PDI can function independently in the isomerase reaction and that the cysteine residues in each active site are essential for catalysis. To evaluate the role of residues flanking the active-site cysteines of PDI in function, a variety of mutations were introduced into the N-terminal active site of PDI within the context of both a functional C-terminal active site and an inactive C-terminal active site in which serine residues replaced C379 and C382. Replacement of non-cysteine residues (W34 to Ser, G36 to Ala, and K39 to Arg) resulted in only a modest reduction in catalytic activity in both the oxidative refolding of RNase A and the reduction of insulin (10-27%), independent of the status of the C-terminal active site. A somewhat larger effect was observed with the H37P mutation where approximately 80% of the activity attributable to the N-terminal domain (approximately 40%) was lost. However, the H37P mutant N-terminal site expressed within the context of an inactive C-terminal domain exhibits 30% activity, approximately 70% of the activity of the N-terminal site alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We report on a new spectrofluorimetric assay for the measurement of reductase activity of proteins belonging to the superfamily of thioredoxins such as protein disulfide isomerase (PDI). The assay relies on the preparation of a fluorescence-quenched substrate easily accessible in two steps through functional group transformations of the peptide Gly-Cys-Asp. In the first step fluorescein isothiocyanate is linked to the Gly-NH(2) terminus and in the second step the Cys-SH groups are converted into a disulfide bond. Both intermediate and final substrate have been fully characterized by mass spectrometric and nuclear magnetic resonance measurements. Dimethyl sulfoxide is here reported to be a mild oxidizing agent allowing us to obtain in good overall yield the assay substrate in a single synthetic step. A reliable estimation of PDI reductase activity is obtained via the detection of a strong fluorescence enhancement after enzymatic reduction. Moreover, our assay provides further support for the key role played by thioredoxin reductase in enabling disulfide reductase activity of PDI.  相似文献   

10.
Thaumatin, a 22-kDa protein containing eight disulfide bonds, is secreted by the filamentous fungus Aspergillus awamori at levels which are dependent upon the extent of overexpression of protein disulfide isomerase (PDIA). Additional copies of the PDIA-encoding gene pdiA were introduced into a strain of A. awamori that expresses a cassette encoding thaumatin. Transformants with different levels of pdiA mRNA and measured PDIA levels were chosen for examination of the impact that PDIA levels had on thaumatin secretion. The secretion of two native proteins, alpha-amylase and acid phosphatase, was also examined in relation to varying levels of PDIA. Over a range of PDIA levels of 1-8, relative to the native level in strains with just one copy of the pdiA gene, the fraction of alpha-amylase and acid phosphatase in the total secreted protein was unaffected. In contrast, a peak level of thaumatin, about 5-fold higher than in the strain with one copy of pdiA, was found in strains with a relative PDIA level of between two and four. Improved thaumatin production was confirmed in 5-1 fermenters using a strain of A. awamori with six pdiA gene copies, containing 3.2-fold higher levels of PDIA than wild-type strains.  相似文献   

11.
Anticoagulant protein S interacts with the complement regulatory protein C4b-binding protein (C4BP) via its sex-hormone-binding globulin (SHB6)-like region, which contains two globular (G) domains. Similar G domains are found in Gas6, a protein homologous to protein S, which is not known to bind C4BP or to have any anticoagulant activity. To determine the relative importance of the two G domains in protein S for C4BP protein binding, three recombinant protein S chimeras were produced having either of the two globular domains, or the whole SHB6-like globulin region, replaced by corresponding parts from Gas6. The chimeras were tested for binding to immobilized C4BP using surface-plasmon-resonance technology and microtiter plate-based assays. In both systems, chimeras containing either only globular domains G1 or G2 from protein S were found to bind C4BP. Binding was stimulated by Ca2+ in a manner similar to that found for wild-type protein S. The affinities for C4BP of both chimeras containing individual G domains from protein S, were lower than that of wild-type protein S. Chimera II, containing the G1 domain from protein S, consistently bound C4BP more efficiently than chimera I, which had the protein S-derived G2 domain. The chimera containing the whole SHB6-like globulin region from Gas6 interacted considerably more weakly with C4BP. Our results demonstrate that both G domains of protein S are involved in the interaction between protein S and C4BP and that full affinity binding is dependent on contributions from both domains.  相似文献   

12.
Eicosanoids are important mediators of the inflammatory response to monosodium urate crystals (MSUC) that results in gout. Phospholipase enzymes cleave fatty acids from membrane phospholipids, and this is thought to be the rate-limiting step in eicosanoid production. To understand better the mechanism of eicosanoid production in this disease, we stimulated human peripheral blood neutrophils and monocytes with MSUC and measured phospholipase enzyme activities. MSUC stimulated both intracellular and secretory phospholipase A2 enzyme activities in a time and concentration-dependent manner. Specificity was observed, as phospholipase C activities were not affected. Pretreatment with colchicine, but not aspirin, indomethacin, allopurinol, or islet activating protein, abrogated the enhanced phospholipase A2 activities. We have recently isolated and characterized a phospholipase A2 activating protein termed PLAP from synovial fluid from patients with rheumatoid arthritis, and from murine and bovine cell lines. PLAP was detected in gouty synovial fluid by immunodot blotting and ELISA assays and expressed the same characteristics as PLAP identified from other sources. To examine the role of PLAP in MSUC-induced phospholipase A2 stimulation, we treated cells with MSUC and observed an increase in immunoreactive PLAP. This response also could be blunted by colchicine, but not other drugs. Both phospholipase A2 and PLAP induced production by human monocytes of PGE2 and leukotriene B4 by neutrophils. These findings suggest that phospholipase A2 activation in response to MSUC requires an intact microtubule structure, and that phospholipase A2 and PLAP may be important modulators of at least a portion of the gouty inflammatory response.  相似文献   

13.
Sequence analysis revealed phospholipase A2 (PLA2) motifs in capsid proteins of parvoviruses. Although PLA2 activity is not known to exist in viruses, putative PLA2s from divergent parvoviruses, human B19, porcine parvovirus, and insect GmDNV (densovirus from Galleria mellonella), can emulate catalytic properties of secreted PLA2. Mutations of critical amino acids strongly reduce both PLA2 activity and, proportionally, viral infectivity, but cell surface attachment, entry, and endocytosis by PLA2-deficient virions are not affected. PLA2 activity is critical for efficient transfer of the viral genome from late endosomes/lysosomes to the nucleus to initiate replication. These findings offer the prospect of developing PLA2 inhibitors as a new class of antiviral drugs against parvovirus infections and associated diseases.  相似文献   

14.
Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple important cellular processes; however, they have not served as targets for the development of therapeutic agents. The authors developed a high-throughput screening assay for PDI and its homologous enzymes in 384-well microplates. The method is based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol and measures the aggregation of reduced insulin chains at 650 nm. This kinetic assay was converted to an end-point assay by using hydrogen peroxide as a stop reagent. The feasibility of this high-throughput assay for screening chemical libraries was demonstrated in a pilot screen. The authors show that this homogenous turbidometric assay is robust and cost-effective and can be applied to identify PDI inhibitors from chemical libraries, opening this class of enzymes for therapeutic exploration.  相似文献   

15.
16.
Human CRK protein is a homolog of the chicken v-crk oncogene product and consists mostly of src homology region 2 (SH2) and SH3, which are shared by many proteins, in particular those involved in signal transduction. SH2 has been shown to bind specifically to phosphotyrosine-containing peptides. We report here that both SH2 and SH3 are required for signaling from CRK protein. Microinjection of the CRK protein induced neurite formation of rat pheochromocytoma cell line PC12. This activity was abolished by mutation of the CRK protein in either SH2 or SH3. The neuronal differentiation induced by the CRK protein was blocked by an excess amount of peptides containing CRK SH3. Moreover, we identified three proteins, of 118, 125, and 136 kDa, which bound specifically to CRK SH3. The CRK-induced neuronal differentiation was also suppressed by monoclonal antibodies against either CRK SH2 or p21ras. These results suggest that both SH2 and SH3 of the CRK protein mediate specific protein-protein binding and that the resulting multimolecular complex generates a signal for neurite differentiation through activation of p21ras.  相似文献   

17.
The thioesterase activity of porcine pancreatic phospholipase A2 has been investigated with non-phospholipid substrates. The acyl-CoA hydrolase activity towards acyl-CoA derivatives is specific for long chain fatty acids (14 C, 16 C) but is unable to hydrolyze short chain acyl-CoA compounds (below 8 C). The same enzyme also shows protein deacylase activity liberating [3H]palmitic acid from [3H]palmitoyl-acyl carrier protein.  相似文献   

18.
Size-exclusion high performance liquid chromatography was used to compare the Stokes radius of the mixed disulfide of trypsinogen refolded for 10 min with the Stokes radius of denatured trypsinogen in high concentrations of urea. After folding for 10 min, rechromatography of a collection of sequential fractions of an initial separation showed that the fractions display microheterogeneity as seen in the value of the Stokes radius of each fraction. These intermediate species differed in their Stokes radius, and each had a globular structure cross-linked by disulfide bonds. In contrast, when trypsinogen with the native disulfides intact was equilibrated at different concentrations of urea (0-8 M), a progressive increase in Stokes radius was observed with extent of unfolding. Rechromatography of a series of fractions collected at a specific urea concentration showed that each had the same Stokes radius as the fraction in the initial separation. Urea-denatured trypsinogen and partially refolded trypsinogen must therefore differ in the disulfide pairing that links regions of the polypeptide chain. These observations support the suggestion that non-native disulfide bonds are responsible for the many stable conformations that form early in the folding of the mixed disulfide of trypsinogen (Light, A., and Higaki, J.N. (1987) Biochemistry 26, 5556-5564). These intermediates initially are loose structures (large Stokes radius) that become more compact with time (decreasing Stokes radius). The intermediates must therefore undergo a continuing disulfide interchange until native disulfides form late in the process when the stable conformation of the native molecule is reached.  相似文献   

19.
Protein kinases whose activity is detectable only in the presence of sphingosine (Sph) or N,N'-dimethyl-Sph (DMS), but not in the presence of 15 other sphingolipids, phospholipids, and glycerolipids tested (Megidish, T., et al. (1995) Biochem. Biophys. Res. Commun. 216, 739-747), have been termed "sphingosine-dependent kinases" (SDKs). We showed previously that a purified SDK (termed "SDK1") phosphorylates a specific Ser position of adapter/chaperone protein 14-3-3 isoforms beta, eta, and zeta but not tau or sigma (Megidish, T., et al. (1998) J. Biol. Chem. 273, 21834-45). In this study we found the following: (i) other SDKs with different substrate specificities are present in cytosolic and membrane extracts of mouse Balb/c 3T3 (A31) fibroblasts. (ii) The activation of these SDKs is specific to D-erythro-Sph and its N-methyl derivatives, the effect of L-threo-Sph or its N-methyl derivatives is minimal, and nonspecific cationic amphiphiles have no effect at all. An SDK separated as fractions "TN31-33" phosphorylated a 50 kDa substrate which was identified as calreticulin, as well as two endogenous substrates with molecular mass 58 and 55 kDa, both identified as protein disulfide isomerase (PDI). This SDK, which specifically phosphorylates calreticulin and PDI, both molecular chaperones found at high levels in endoplasmic reticulum, is tentatively termed "SDK2". Another SDK activity was copurified with glucose-regulated protein (GRP) and heat shock proteins (HSP). One GRP substrate had the same amino acid sequence as GRP94 (synonym: endoplasmin); another HSP substrate had the same amino acid sequence as mouse HSP86 or HSP84, the analogues of human HSP90. An SDK activity separated and present in "fraction 42" from Q-Sepharose chromatography specifically phosphorylated GRP105 (or GRP94) and HSP68 but did not phosphorylate PDI or 14-3-3. This SDK is clearly different from other SDKs in its substrate specificity and is tentatively termed "SDK3". Interestingly, substrates of all these SDKs so far identified are molecular chaperones or adapters capable of binding to enzymes and key molecules involved in signal transduction, maintaining tertiary structure of bioactive molecules, or maintaining cellular homeostasis in response to environmental stress. Thus, the essential role of Sph and DMS is to activate molecular chaperones, thereby providing a link to the mechanism by which SDK activity regulates cellular homeostasis and signal transduction.  相似文献   

20.
H C Shin  H A Scheraga 《FEBS letters》1999,456(1):143-145
The role of protein disulfide isomerase (PDI) in the regeneration of ribonuclease A with dithiothreitol (DTT) was investigated at three different temperatures. The rates of formation of the native protein were markedly increased in the presence of PDI, 9-fold at 15 degrees C, 6-fold at 25 degrees C and 62-fold at 37 degrees C, respectively. In the presence of PDI, major changes were found in the distribution of intermediates in the three-disulfide region at 25 and 15 degrees C and also in the one-disulfide region at 15 degrees C, with the fast accumulation of the two native-like species des-[65-72] and des-[40-95]. The present results indicate that PDI does not alter the two major parallel pathways involving des-[65-72] and des-[40-95] in the regeneration of ribonuclease A with DTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号