首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemotactic behavior of the nematode Caenorhabditis elegans to chemical attractants, water-soluble sodium acetate and odorant diacetyl, was investigated using nematodes at various developmental stages to examine the effects of postembryonic development on chemotactic response and spontaneous locomotion. The chemotactic responses to attractants increased as development progressed, and the largest responses to either 1.0 M sodium acetate or 0.1% diacetyl were seen at the young adult (YA) or day adult (A1) stage, respectively. Responses to the chemicals declined thereafter in-line with increasing age. The chemotaxis indices for attractants correlated with activity of spontaneous locomotion (p<0.01), suggesting that a change in spontaneous locomotion is one of the factors involved with the change in chemotactic responses during development. We also investigated the effect of aging on attractant choice by the simultaneous presentation of 0.6 M sodium acetate and 0.1% diacetyl. In the presence of both attractants, the fraction of larval animals at the sodium acetate location was greater than that at the diacetyl location (p<0.05). The fractions of YA animals that gathered at either location were almost identical, whereas the fraction of adult animals at the diacetyl location was greater than that at the sodium acetate location (p<0.05). The patterns of attractant choice of the long-lived daf-2 mutants and short lifespan mev-1 mutants showed the same tendency as those of wild type nematodes in the presence of both attractants. These results suggest that a change in the neuronal mechanisms controlling attractant choice and preference occurs during developmental progression.  相似文献   

2.
Selection of chemotaxis mutants of Dictyostelium discoideum   总被引:3,自引:7,他引:3       下载免费PDF全文
A method has been developed for the efficient selection of chemotaxis mutants of Dictyostelium discoideum. Mutants defective in the chemotactic response to folate could be enriched up to 30-fold in one round of selection using a chamber in which a compartment that contained the chemoattractant was separated by a sandwich of four nitrocellulose filters from a compartment that contained buffer. Mutagenized cells were placed in the center of the filter layer and exposed to the attractant gradient built up between the compartments for a period of 3-4 h. While wild-type cells moved through the filters in a wave towards the compartment that contained attractant, mutant cells remained in the filter to which they were applied. After several repetitions of the selection procedure, mutants defective in chemotaxis made up 10% of the total cell population retained in that filter. Mutants exhibiting three types of alterations were collected: motility mutants with either reduced speed of movement, or altered rates of turning; a single mutant defective in production of the attractant-degrading enzyme, folate deaminase; and mutants with normal motility but reduced chemotactic responsiveness. One mutant showed drastically reduced sensitivity in folate-induced cGMP production. Morphogenetic alterations of mutants defective in folate chemotaxis are described.  相似文献   

3.
The chemotactic responses by starved cells of marine Vibrio sp. strain S14 differed from those elicited by cells that were not nutrient limited. The rate of chemotaxis at different concentrations of several attractants varied for starved and growing cells. Vibrio sp. strain S14 showed positive chemotaxis to leucine, valine, arginine, and glucose at the onset of energy and nutrient deprivation. A continued, though decreased, positive response was demonstrated fro leucine, arginine, and glucose at 10 h of starvation. Cells starved for 3 h displayed a stronger response to glucose than those starved for shorter or longer times. However, cells starved for 5 and 10 h responded more strongly to a lower concentration of glucose than did cells starved for 0 and 3 h. Starvation for 24 h elicited no measurable chemotaxis to leucine, arginine, or glucose. The motility decreased by over 95% in the cell population after 24 h of starvation, which resulted in a low sensitivity in the chemotaxis assay. A switch in the response to valine was observed by 3 h of starvation. The addition of nutrients of 22-h-starved cells elicited a temporary positive chemotactic response to leucine by 2 and 4 h of nutrient recovery, while cells at 1 and 6 h of recovery showed no response. At 2 h of recovery, the greatest response was recorded to 10−4 M leucine, whereas at 4 h it was to 10−2 M leucine. Ten to fifty percent of the 22-h-starved cell population regained their motility after 4 h of nutrient-aided recovery. It is possible that two types of chemosensory systems exist in marine bacteria. Starved and growing cells responded to different concentrations of the attractant, and growing cells displayed a saturated chemotactic system with leucine as the attractant, unlike the response during starvation.  相似文献   

4.
In bacterial chemotaxis, the chemoreceptors [methyl-accepting chemotaxis proteins (MCPs)] transduce chemotactic signals through the two-component histidine kinase CheA. At low but not high attractant concentrations, chemotactic signals must be amplified. The MCPs are organized into a polar lattice, and this organization has been proposed to be critical for signal amplification. Although evidence in support of this model has emerged, an understanding of how signals are amplified and modulated is lacking. We probed the role of MCP localization under conditions wherein signal amplification must be inhibited. We tested whether a large increase in attractant concentration (a change that should alter receptor occupancy from c. 0% to > 95%) would elicit changes in the chemoreceptor localization. We treated Escherichia coli or Bacillus subtilis with a high level of attractant, exposed cells to the cross-linking agent paraformaldehyde and visualized chemoreceptor location with an anti-MCP antibody. A marked increase in the percentage of cells displaying a diffuse staining pattern was obtained. In contrast, no increase in diffuse MCP staining is observed when cells are treated with a repellent or a low concentration of attractant. For B. subtilis mutants that do not undergo chemotaxis, the addition of a high concentration of attractant has no effect on MCP localization. Our data suggest that interactions between chemoreceptors are decreased when signal amplification is unnecessary.  相似文献   

5.
Microarray analysis of gene expression with age in individual nematodes   总被引:2,自引:4,他引:2  
Golden TR  Melov S 《Aging cell》2004,3(3):111-124
We compare the aging of wild-type and long-lived C. elegans by gene expression profiling of individual nematodes. Using a custom cDNA array, we have characterized the gene expression of 4-5 individuals at 4 distinct ages throughout the adult lifespan of wild-type N2 nematodes, and at the same ages for individuals of the long-lived strain daf-2(e1370). Using statistical tools developed for microarray data analysis, we identify genes that differentiate aging N2 from aging daf-2, as well as classes of genes that change with age in a similar way in both genotypes. Our novel approach of studying individual nematodes provides practical advantages, since it obviates the use of mutants or drugs to block reproduction, as well as the use of stressful mass-culturing procedures, that have been required for previous microarray studies of C. elegans. In addition, this approach has the potential to uncover the molecular variability between individuals of a population, variation that is missed when studying pools of thousands of individuals.  相似文献   

6.
Clinical and scientific investigations of leukocyte chemotaxis will be greatly aided by an ability to measure quantitative parameters characterizing the intrinsic random motility, chemokinetic, and chemotactic properties of cell populations responding to a given attractant. Quantities typically used at present, such as leading front distances, migrating cell numbers, etc., are unsatisfactory in this regard because their values are affected by many aspects of the assay system unrelated to cell behavioral properties. In this paper we demonstrate the measurement of cell migration parameters that do, in fact, characterize the intrinsic cell chemosensory movement responses using cell density profiles obtained in the linear under-agarose assay. These parameters are the random motility coefficient, mu, and the chemotaxis coefficient, chi, which appear in a theoretical expression for cell population migration. We propose a priori the dependence of chi on attractant concentration, based on an independent experimental correlation of individual cell orientation bias in an attractant gradient with a spatial difference in receptor occupancy. Our under-agarose population migration results are consistent with this proposition, allowing chemotaxis to be reliably characterized by a chemotactic sensitivity constant, chi 0, to which chi is directly proportional. Further, chi 0 has fundamental significance; it represents the reciprocal of the difference in number of bound receptors across cell dimensions required for directional orientation bias. In particular, for the system of human peripheral blood polymorphonuclear neutrophil leukocytes responding to FNLLP, we find that the chemotaxis coefficient is a function of attractant concentration, a following the expression: chi = chi 0NT0 f(a) S(a) Kd/(Kd + a)2 where Kd is the FNLLP-receptor equilibrium dissociation constant and NT0 is the total number of cell surface receptors for FNLLP. f(a) is the fraction of surface receptors remaining after down-regulation, and S(a) is the cell movement speed, both known functions of FNLLP concentration. We find that chi 0NT0 = 0.2 cm; according to a theoretical argument outlined in the Appendix this means that these cells exhibit 75% orientation toward higher attractant concentration when the absolute spatial difference in bound receptors is 0.0025NT0 over 10 micron. (For example, if NT0 = 50,000 this would correspond to a spatial difference of 125 bound receptors over 10 micron.) This result can be compared with estimates obtained from visual studies of individual neutrophils.  相似文献   

7.
An individual cell-based mathematical model of Rivero et al. provides a framework for determining values of the chemotactic sensitivity coefficient chi 0, an intrinsic cell population parameter that characterizes the chemotactic response of bacterial populations. This coefficient can theoretically relate the swimming behavior of individual cells to the resulting migration of a bacterial population. When this model is applied to the commonly used capillary assay, an approximate solution can be obtained for a particular range of chemotactic strengths yielding a very simple analytical expression for estimating the value of chi 0, [formula: see text] from measurements of cell accumulation in the capillary, N, when attractant uptake is negligible. A0 and A infinity are the dimensionless attractant concentrations initially present at the mouth of the capillary and far into the capillary, respectively, which are scaled by Kd, the effective dissociation constant for receptor-attractant binding. D is the attractant diffusivity, and mu is the cell random motility coefficient. NRM is the cell accumulation in the capillary in the absence of an attractant gradient, from which mu can be determined independently as mu = (pi/4t)(NRM/pi r2bc)2, with r the capillary tube radius and bc the bacterial density initially in the chamber. When attractant uptake is significant, a slightly more involved procedure requiring a simple numerical integration becomes necessary. As an example, we apply this approach to quantitatively characterize, in terms of the chemotactic sensitivity coefficient chi 0, data from Terracciano indicating enhanced chemotactic responses of Escherichia coli to galactose when cultured under growth-limiting galactose levels in a chemostat.  相似文献   

8.
Acidovorax sp. strain JS42 is able to utilize 2-nitrotoluene (2NT) as its sole carbon, nitrogen, and energy source. We report here that strain JS42 is chemotactic to 2NT and that the response is increased when cells are grown on compounds such as 2NT that are known to induce the first step of 2NT degradation. Assays with JS42 mutants unable to oxidize 2NT showed that the first step of 2NT metabolism was required for the induced response, but not for a portion of the constitutive response, indicating that 2NT itself is an attractant. The 2NT metabolite nitrite was shown to be a strong attractant for strain JS42, and sufficient nitrite was produced during the taxis assay to account for a large part of the induced response. A mutant with an inactivated ntdY gene, which is located adjacent to the 2NT degradation genes and codes for a putative methyl-accepting chemotaxis protein, showed a defect in taxis toward 2NT that may involve a reduced response to nitrite. Responses of a mutant defective for the energy-taxis receptor, Aer, indicated that a functional aer gene is required for a substantial part of the wild-type induced response to 2NT. In summary, strain JS42 utilizes three types of taxis to sense and respond to 2NT: constitutive 2NT-specific chemotaxis to directly sense 2NT, metabolism-dependent nitrite-specific chemotaxis that may be mediated by NtdY, and energy taxis mediated by Aer.  相似文献   

9.
10.
A number of individual-cell and population-scale assays have been introduced to quantify bacterial motility and chemotaxis. The transport coefficients reported in the literature, however, span several orders of magnitude, making it difficult to ascertain to what degree variations in bacterial species/strain, growth medium, growth and experimental conditions, and experiment type contribute to the reported differences in coefficient values. We quantified the random motility of Escherichia coli AW405 using the capillary assay, stopped-flow diffusion chamber (SFDC), and tracking microscope. We obtained good agreement for the random motility coefficient between these assays when using the same bacterial strain and consistent growth and experimental conditions. Chemotaxis of E. coli toward the attractant alpha-methylaspartate was quantified using the SFDC and capillary assay. Good agreement for the chemotactic sensitivity coefficient between the SFDC and the capillary assay was obtained across a limited attractant concentration range. Three different mathematical models were considered for analyzing capillary assay data to obtain a chemotactic sensitivity coefficient. These models differed by their treatment of the bacterial concentration in the chamber and the attractant concentration at the mouth. Results from our study indicate that the capillary assay, the most commonly used bacterial random motility and chemotaxis assay, can be used to accurately quantify bacterial transport coefficients over a limited range of attractant concentrations, provided experiments are performed carefully and appropriate mathematical models are used to interpret the experimental data.  相似文献   

11.
Chemotaxis mutants of Spirochaeta aurantia.   总被引:5,自引:3,他引:2       下载免费PDF全文
Five Spirochaeta aurantia chemotaxis mutants were isolated. One mutant (the che-101 mutant) never reversed, one (the che-200 mutant) flexed predominantly, two (the che-300 and che-400-1 mutants) exhibited elevated reversal frequencies, and one (the che-400 mutant) exhibited chemotactically unstimulated behavior similar to that of the wild-type strain. The che-101 and che-400 mutants were essentially nonchemotactic, whereas the che-200, che-300, and che-400-1 mutants showed impaired chemotactic responses. Protein methylation in response to attractant addition appeared normal in all of the mutants. Compared with the wild type, all of the mutants exhibited significantly altered membrane potential responses to the attractant xylose.  相似文献   

12.
S. Gottlieb  G. Ruvkun 《Genetics》1994,137(1):107-120
Under conditions of high population density and low food, Caenorhabditis elegans forms an alternative third larval stage, called the dauer stage, which is resistant to desiccation and harsh environments. Genetic analysis of some dauer constitutive (Daf-c) and dauer defective (Daf-d) mutants has revealed a complex pathway that is likely to function in particular neurons and/or responding tissues. Here we analyze the genetic interactions between three genes which comprise a branch of the dauer formation pathway that acts in parallel to or downstream of the other branches of the pathway, the Daf-c genes daf-2 and daf-23 and the Daf-d gene daf-16. Unlike mutations in other Daf-c genes, mutations in both daf-2 and daf-23 cause non-conditional arrest at the dauer stage. Our epistasis analysis suggests that daf-2 and daf-23 are functioning at a similar point in the dauer pathway. First, mutations in daf-2 and daf-23 are epistatic to mutations in the same set of Daf-d genes. Second, daf-2 and daf-23 mutants are suppressed by mutations in daf-16. Mutations in daf-16 do not suppress any of the other Daf-c mutants as efficiently as they suppress daf-2 and daf-23 mutants. Third, double mutants between either daf-2 or daf-23 and several other daf-d mutants exhibit an unusual interaction. Based on these results, we present a model for the function of daf-2, daf-23 and daf-16 in dauer formation.  相似文献   

13.
A high-throughput capillary assay for bacterial chemotaxis   总被引:3,自引:0,他引:3  
We present a high-throughput capillary assay in order to characterize the chemotactic response of the E. coli bacterium. We measure the number of organisms attracted into an array of 96 capillary tubes containing the attractant L-aspartate. The effect of bacterial concentration on the chemotactic response is reported. Such high-throughput assay can be used to characterize bacterial chemotaxis function of a wide range of biochemical parameters.  相似文献   

14.
Involvement of transport in Rhodobacter sphaeroides chemotaxis.   总被引:11,自引:9,他引:2       下载免费PDF全文
The chemotactic response to a range of chemicals was investigated in the photosynthetic bacterium Rhodobacter sphaeroides, an organism known to lack conventional methyl-accepting sensory transduction proteins. Strong attractants included monocarboxylic acids and monovalent cations. Results suggest that the chemotactic response required the uptake of the chemoeffector, but not its metabolism. If a chemoeffector could block the uptake of another attractant, it also inhibited chemotaxis to that attractant. Sodium benzoate was not an attractant but was a competitive inhibitor of the propionate uptake system. Binding in an active uptake system was therefore insufficient to cause a chemotactic response. At different concentrations, benzoate either blocked propionate chemotaxis or reduced the sensitivity of propionate chemotaxis, an effect consistent with its role as a competitive inhibitor of uptake. Bacteria only showed chemotaxis to ammonium when grown under ammonia-limited conditions, which derepressed the ammonium transport system. Both chemotaxis and uptake were sensitive to the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, suggesting an involvement of the proton motive force in chemotaxis, at least at the level of transport. There was no evidence for internal pH as a sensory signal. These results suggest a requirement for the uptake of attractants in chemotactic sensing in R. sphaeroides.  相似文献   

15.
The mathematical model developed by Riveroet al. (1989,Chem. Engng Sci. 44, 2881–2897) is applied to literature data measuring chemotactic bacterial population distributions in response to steep as well as shallow attractant gradients. This model is based on a fundamental picture of the sensing and response mechanisms of individual bacterial cells, and thus relates individual cell properties such as swimming speed and tumbling frequency to population parameters such as the random motility coefficient and the chemotactic sensitivity coefficient. Numerical solution of the model equations generates predicted bacterial density and attractant concentration profiles for any given experimental assay. We have previously validated the mathematical model from experimental work involving a step-change in the attractant gradient (Fordet al., 1991Biotechnol. Bioengng.37, 647–660; For and Lauffenburger, 1991,Biotechnol. Bioengng,37, 661–672). Within the context of this experimental assay, effects of attractant diffusion and consumption, random motility, and chemotactic sensitivity on the shape of the profiles are explored to enhance our understanding of this complex phenomenon. We have applied this model to various other types of gradients with successful intepretation of data reported by Dalquistet al. (1972,Nature New Biol. 236, 120–123) forSalmonella typhimurum validating the mathematical model and supportin the involvement of high and low affinity receptors for serine chemotaxis by these cells.  相似文献   

16.
J. J. Vowels  J. H. Thomas 《Genetics》1994,138(2):303-316
Phenotypic analysis of the daf-11 and daf-21 mutants of Caenorhabditis elegans suggests that they have defects in components shared by processes analogous to vertebrate taste and olfaction. daf-11 and daf-21 mutations were previously shown to cause inappropriate response to the dauer-inducing pheromone. By mutational analysis and by disabling specific chemosensory sensilla with a laser, we show that neurons in the amphid sensilla are required for this pheromone response. Using behavioral assays, we find that daf-11 and daf-21 mutants are not defective in avoidance of certain non-volatile repellents, but are defective in taxis to non-volatile attractants. In addition, both mutants are defective in taxis to volatile attractants detected primarily by the amphid neuron AWC, but respond normally to volatile attractants detected primarily by AWA. We propose that daf-11 and daf-21 mediate sensory transduction for both volatile and non-volatile compounds in specific amphid neurons.  相似文献   

17.
18.
19.
20.
Strain-specific chemotaxis of Azospirillum spp.   总被引:13,自引:4,他引:9       下载免费PDF全文
Chemotactic responses of three Azospirillum strains originating from different host plants were compared to examine the possible role of chemotaxis in the adaptation of these bacteria to their respective hosts. The chemotaxis to several sugars, amino acids, and organic acids was determined qualitatively by an agar plate assay and quantitatively by a channeled-chamber technique. High chemotactic ratios, up to 40, were obtained with the latter technique. The chemotactic response did not rely upon the ability of the bacteria to metabolize the attractant. Rather, it depended on the attractant concentration and stereoconfiguration. Chemotaxis was found to be strain specific. Differences were particularly observed between a wheat isolate and strains originating from the C4-pathway plants maize and Leptochloa fusca. In contrast to the other two strains, the wheat isolate was strongly attracted to D-fructose, L-aspartate, citrate, and oxalate. The other strains showed maximal attraction to L-malate. The chemotactic responses to organic acids partially correlate with the exudation of these acids by the respective host plants. Additionally, a heat-labile, high-molecular-weight attractant was found in the root exudates of L. fusca, which specifically attracted the homologous Azospirillum strain. It is proposed that strain-specific chemotaxis probably reflects an adaptation of Azospirillum spp. to the conditions provided by the host plant and contributes to the initiation of the association process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号