首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing morphological and physiological evidence indicates that axoplasm of squid axons sequesters calcium by both mitochondrial and non-mitochondrial buffers. The present work demonstrates that essentially all of the non-mitochondrial component is located in organelles. Extruded axoplasm was loaded with varying amounts of calcium by mixing with small volumes of solutions containing pH buffered 45Ca. Ethyleneglycol-bis(β-amino-ethyl ether)N,N′-tetraacetic acid (EGTA) or diethylenetriamine pentaacetic acid (DTPA) was used to stabilize the free calcium. The axoplasm was then sucked up in a polyethylene tube and centrifuged at 100,000 g for 2–3 hours to produce a loose pellet comprising 10–20% of the axoplasm volume. After centrifugation, the tube was frozen, sliced into segments, and counted by liquid scintillation. No significant pellet accumulation of exogenous calcium occurred at physiological concentrations of free calcium (ca. 50 nM); however, a threshold for accumulation existed at 150–200 nM. Essentially complete pellet sequestration of the exogenous load occurred at a free calcium concentration above 1 μM. About half of the pellet buffering capacity was sensitive to carbonyl cyanide, p-trifluoromethoxy phenylhydrazone (FCCP). Variation of exogenous load between 0.1 – 3 mmole/kg axoplasm did not affect the buffering capacity of either the FCCP sensitive or insensitive components when the free calcium concentration was above threshold.  相似文献   

2.
Continuous nondestructive monitoring of intracellular ionized calcium in isolated squid axons by differential absorption spectroscopy (using arsenazo III and antipyrylazo III) was used to study uptake of calcium by carbonyl cyanide, p-trifluoromethoxy-phenylhydrazone (FCCP)- and (or) cyanide (CN)-sensitive and insensitive constituents of axoplasm. Known calcium loads imposed on the axon by stimulation produced proportional increments of free axoplasmic calcium. Measurement of increments in ionized calcium as a function of load confirmed earlier reports of buffering in normal and FCCP- and (or) CN-poisoned axons. Measurement of rates of calcium uptake by presumed mitochondria showed little uptake at ambient Ca below 200--400 nM, with sigmoidal rise to about 20--30 mumol/kg axoplasm per min (calculated to be about 200 mmol/kg mitochondrial protein per min) at 50 micrometer, indicating a functional threshold for presumed mitochondrial uptake well above physiological ionized calcium concentration. Treatment of stimulated axons with cyanide, to release calcium from presumed mitochondria, showed that the sensitivity to cyanide decreased progressively with time after stimulation (t 1/2 = 3--10 min) implying transfer of sequestered calcium into a less metabolically labile form.  相似文献   

3.
Intracellular calcium buffering capacity in isolated squid axons   总被引:12,自引:7,他引:5       下载免费PDF全文
Changes in ionized calcium were studied in axons isolated from living squid by measuring absorbance of the Ca binding dye Arsenazo III using multiwavelength differential absorption spectroscopy. Absorption changes measured in situ were calibrated in vitro with media of ionic composition similar to axoplasm containing CaEGTA buffers. Calcium loads of 50-2,500 μmol/kg axoplasm were induced by microinjection, by stimulation in 112 mM Ca seawater, or by soaking in choline saline with 1-10 mM Ca. Over this range of calcium loading of intact axoplasm, the ionized calcium in the axoplasm rose about 0.6 nM/μM load. Similar loading in axons preteated with carbonyl cyanide 4- trifluoromethoxyphenylhydrazone (FCCP) to inhibit the mitochondrial proton gradient increased ionized calcium by 5-7 percent of the imposed load, i.e. 93-95 percent of the calcium load was buffered by a process insensitive to FCCP. This FCCP- insensitive buffer system was not saturated by the largest calcium loads imposed, indicating a capacity of at least several millimolar. Treatment of previously loaded axons with FCCP or apyrase plus cyanide produced rises in ionized calcium which could be correlated with the extent of the load. Analysis of results indicated that, whereas only 6 percent of the endogenous calcium in fresh axons is stored in the FCCP-sensitive (presumably mitochondrial) buffer system, about 30 percent of an imposed exogenous load in the range of 50-2,500 μM is taken up by this system.  相似文献   

4.
Axons freshly dissected from living specimens of the tropical squid Dorytheutis plei have a calcium content of 68 mumol/kg of axoplasm. Fibers stimulated at 100 impulses/s in 100 mM Ca seawater increase their Ca content by 150 mumol/kg.min; axons placed in 3 Ca (choline) seawater increase their Ca content by 12 mumol/kg.min. Axons loaded with 0.2--1.5 mmol Ca/kg of axoplasm extruded Ca with a half time of 15--30 min when allowed to recover in 3 Ca (Na) seawater. The half time for recovery of loaded axons poisoned with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and iodoacetic acid (IAA) is about the same as control axons. Axons placed in 40 mM Na choline seawater (to reduce chemical gradient for Na) or in 40 mM Na, 410 mM K seawater to reduce the electrochemical gradient for Na to near zero either fail to lose previously loaded Ca or gain further Ca.  相似文献   

5.
Intracellular potassium activity, (aK)i, and axoplasmic K+ concentration, [K+]i, were measured by means of K+-selective microelectrodes and atomic absorption spectroscopy, respectively, in squid giant axons dialyzed with K+-free dialysis solution and bathed in K+-free artificial sea water. (aK)i measurements indicated that axoplasmic free K+ could be depleted by dialysis, whereas [K+]i measurements on axoplasm extruded from these axons suggest substantial retention of K+ (15.5 +/- 1.7 mmol/kg axoplasm K+; n = 9). In comparison, [K+]i in axoplasm extruded from freshly dissected axons was 330 +/- 16 mmol/kg axoplasm (n = 6). These data suggest that approximately 5% of the axoplasmic K+ ions are not easily removed by dialysis and that these ions are either bound to macromolecular sites or sequestered into membrane-enclosed organelles.  相似文献   

6.
Calcium Efflux from Internally Dialyzed Squid Giant Axons   总被引:12,自引:10,他引:2       下载免费PDF全文
Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources.  相似文献   

7.
Squid giant axons were injected with aequorin or arsenazo III and impaled with a Ca-sensing electrode. The light output of aequorin or the spectrophotometer output when measuring arsenazo was compared with the voltage output of the electrode when the squid axon was depolarized with high-K solutions, when the seawater was made Na-free, or when the axon was tetanized for several minutes. The results from these treatments were that the optical response rose (as much as 50-fold) with all treatments known to increase Ca entry, while the electrode remained unaffected by these treatments. If axons previously subjected to Ca load are treated with electron-transport poisons such as CN, it is known that [Ca]i rises after a time necessary to deplete ATP stores. In such axons one expects a rise of [Ca]i in axoplasm which does not necessarily have to be uniform although the source of such Ca is the mitochondria and these are uniformly distributed in axoplasm. Under conditions of CN application, the optical signals from aequorin or arsenazo and Ca electrode output do rise together when [Ca]i is high, but there is a region of [Ca]i concentration where aequorin light output or arsenazo absorbance rises while electrode output does not. Axons not loaded with Ca but injected with apyrase and vanadate have mitochondria that still retain some Ca and this can be released by CN in a truly uniform manner. The results show that such a release (which is small) can be readily measured with aequorin, but again the Ca electrode is insensitive to such [Ca]i change.  相似文献   

8.
Cytoplasmic structure in rapid-frozen axons   总被引:31,自引:27,他引:4       下载免费PDF全文
Turtle optic nerves were rapid-frozen from the living state, fractured, etched, and rotary shadowed. Stereo views of fractured axons show that axoplasm consists of three types of longitudinally oriented domains. One type consists of neurofilament bundles in which individual filaments are interconnected by a cross-bridging network. Contiguous to neurofilament domains are domains containing microtubules suspended in a loose, granular matrix. A third domain is confined to a zone, 80-100 nm wide, next to the axonal membrane and consists of a dense filamentous network connecting the longitudinal elements of the axonal cytoskeleton to particles on the inner surface of the axolemma. Three classes of membrane-limited organelles are distinguished: axoplasmic reticulum, mitochondria, and discrete vesicular organelles. The vesicular organelles must include lysosomes, multivesicular bodies, and vesicles which are retrogradely transported in axons, though some vesicular organelles may be components of the axoplasmic reticulum. Organelles in each class have a characteristic relationship to the axonal cytoskeleton. The axoplasmic reticulum enters all three domains of axoplasm, but mitochondria and vesicular organelles are excluded from the neurofilament bundles, a distribution confirmed in thin sections of cryoembedded axons. Vesicular organelles differ from mitochondria in at least three ways with respect to their relationships to adjacent axoplasm: (a) one, or sometimes both, of their ends are associated with a gap in the surrounding granular axoplasm; (b) an appendage is typically associated with one of their ends; and (c) they are not attached or closely apposed to microtubules. Mitochondria, on the other hand, are only rarely associated with gaps in the axoplasm, do not have an appendage, and are virtually always attached to one or more microtubules by an irregular array of side-arms. We propose that the longitudinally oriented microtubule domains are channels within which organelles are transported. We also propose that the granular material in these channels may constitute the myriad enzymes and other nonfibrous components that slowly move down the axon.  相似文献   

9.
Giant axons from the squid, Loligo pealei, were fixed in glutaraldehyde and postfixed in osmium tetroxide. Calcium chloride (5 mM/liter) was added to all aqueous solutions used for tissue processing. Electron-opaque deposits were found along the axonal plasma membranes, within mitochondria, and along the basal plasma membranes of Schwann cells. X-ray microprobe analysis (EMMA-4) yielded signals for calcium and phosphorus when deposits were probed, whereas these elements were not detected in the axoplasm.  相似文献   

10.
Squid giant axons were injected with aequorin or arsenazo III and impaled with a Ca-sensing electrode. The light output of aequorin or the spectrophotometer output when measuring arsenazo was compared with the voltage output of the electrode when the squid axon was depolarized with high-K solutions, when the seawater was made Na-free, or when the axon was tetanized for several minutes. The results from these treatments were that the optical response rose (as much as 50-fold) with all treatments known to increase Ca entry, while the electrode remained unaffected by these treatments. If axons previously subjected to Ca load are treated with electron-transport poisons such as CN, it is known that [Ca]i rises after a time necessary to deplete ATP stores. In such axons one expects a rise of [Ca]i in axoplasm which does not necessarily have to be uniform although the source of such Ca is the mitochondria and these are uniformly distributed in axoplasm. Under conditions of CN application, the optical signals from aequorin or arsenazo and Ca electrode output do rise together when [Ca]i is high, but there is a region of [Ca]i concentration where aequorin light output or arsenazo absorbance rises while electrode output does not. Axons not loaded with Ca but injected with apyrase and vanadate have mitochondria that still retain some Ca and this can be released by CN in a truly uniform manner. The results show that such a release (which is small) can be readily measured with aequorin, but again the Ca electrode is insensitive to such [Ca]i change.  相似文献   

11.
Axoplasm from freshly isolated Myxicola giant axons was mixed with small volumes of 'artificial axoplasm' containing 45Ca and either CaEGTA/EGTA or CaDTPA/DTPA buffers giving various nominal values of [Ca2+]. The axoplasm samples were centrifuged at 100 000 X g for 30 min to form a pellet and the percentage of 45Ca bound to the pellet was determined. The fraction of bound calcium rose with increasing values of [Ca2+] along an S-shaped curve. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was used to reveal the presence of mitochondrial Ca uptake. At physiological values of [Ca2+], around 100 nM, Ca uptake was insensitive to FCCP. As [Ca2+] was elevated, increasing sensitivity to FCCP was noted above [Ca2+] = 0.5 microM. At low values of [Ca2+], including the physiological range, Ca binding was significantly reduced by vanadate and quercetin, agents known to inhibit Ca uptake mediated by Ca2+-activated ATPase reactions. Inhibition of Ca binding by these agents was approximately 50% at physiological values of [Ca2+]. ATP depletion decreased the percentage of Ca binding by the pellet at physiological [Ca2+]. The results suggest that about 50% of the Ca buffering by particulate matter in axoplasm is via organelles requiring intact Ca2+-ATPase reaction at physiological values of [Ca2+].  相似文献   

12.
Native microtubules from extruded axoplasm of squid giant axons were used as a paradigm to characterize the motion of organelles along free microtubules and to study the dynamics of microtubule length changes. The motion of large round organelles was visualized by AVEC-DIC microscopy and analyzed at a temporal resolution of 10 frames per second. The movements were smooth and showed no major changes in velocity or direction. During translocation, the organelles paused very rarely. Superimposed on the rather constant mean velocity was a velocity fluctuation, which indicated that the organelles are subject to considerable thermal motion during translocation. Evidence for a regular low-frequency oscillation was not found. The thermal motion was anisotropic such that axial motion was less restricted than lateral motion. We conclude that the crossbridge connecting the moving organelle to the microtubule has a flexible region that behaves like a hinge, which permits preferential movement in the direction parallel to the microtubule. The dynamic changes in length of native microtubules were studied at a temporal resolution of 1 Hz. About 98% of the native microtubules maintained their length ("stable" microtubules), while 2% showed phases of growing and/or shrinking typical for dynamic instability ("dynamic" microtubules). Gliding and organelle motion were not influenced by dynamic length changes. Transitions between growing and shrinking phases were low-frequency events (1-10 minutes per cycle). However, a new type of microtubule length fluctuation, which occurred at a high frequency (a few seconds per cycle), was detected. The length changes were in the 1-3 micron range. The latter events were very prominent at the (+) ends. It appears that the native axonal microtubules are much more stable than the purified microtubules and the microtubules of cultured cells that have been studied thus far. Potential mechanisms accounting for the three states of microtubule stability are discussed. These studies show that the native microtubules from squid giant axons are a very useful paradigm for studying microtubule-related motility events and microtubule dynamics.  相似文献   

13.
Magnesium efflux in dialyzed squid axons   总被引:4,自引:2,他引:2       下载免费PDF全文
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflux of Mg++ is largely independent of [Mg]i when ATP is at physiological levels, but in the absence of ATP reaches half the value of Mg efflux in be presence of ATP when [Mg]i is about 4 mM and [Na] 40 mM. Half-maximum responses to ATP occur at about 350 micronM ATP into seawater with Na either present or absent. The Mg efflux mechanism has many similarities to the Ca efflux system in squid axons especially with respect to the effects of ATP, Nao, and Na on the flux. The concentrations of free Mg and Ca in axoplasm differ, however, by a factor of 10(5) while the observed fluxes differ by a factor of 10(2).  相似文献   

14.
Summary The influx of magnesium from seawater into squid giant axons has been measured under conditions where internal solute control in the axon was maintained by dialysis. Mg influx is smallest (1 pmol/cm2 sec) when both Na and ATP have been removed from the axoplasm by dialysis. The addition of 3mm ATP to the dialysis fluid gives a Mg influx of 2.5 pmol/cm2 sec while the addition of [Na] i and [ATP] i gives 3 pmol/cm2 sec as a value for Mg influx; this corresponds well with fluxes measured in intact squid giant axons.The Mg content of squid axons is 6 mmol/kg axoplasm; this is unaffected by soaking axons in Li or Na seawater for periods of up to 100 min.  相似文献   

15.
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region.  相似文献   

16.
Beta,beta'-iminodipropionitrile (IDPN) produces a rearrangement of axoplasmic organelles with displacement of microtubules, smooth endoplasmic reticulum, and mitochondria toward the center and of neurofilaments toward the periphery of the axon, whereas the rate of the fast component of axonal transport is unchanged. Separation of microtubules and neurofilaments makes the IDPN axons an excellent model for study of the role of these two organelles in axonal transport. The cross-sectional distribution of [3H]-labeled proteins moving with the front of the fast transport was analyzed by quantitative electron microscopic autoradiography in sciatic nerves of IDPN-treated and control rats, 6 h after injection of a 1:1 mixture of [3H]-proline and [3H]-lysine into lumbar ventral horns. In IDPN axons most of the transported [3H] proteins were located in the central region with microtubules, smooth endoplasmic reticulum and mitochondria, whereas few or none were in the periphery with neurofilaments. In control axons the [3H]-labeled proteins were uniformly distributed within the axoplasm. It is concluded that in fast axonal transport: (a) neurofilaments play no primary role; (b) the normal architecture of the axonal cytoskeleton and the normal cross-sectional distribution of transported materials are not indispensable for the maintenance of a normal rate of transport. The present findings are consistent with the models of fast transport that envision microtubules as the key organelles in providing directionality and propulsive force to the fast component of axonal transport.  相似文献   

17.
The components of 45calcium (Ca) uptake were studied in saponin skinned rat caudal artery. The steady-state Ca content increased when the free Ca concentration was varied from 10(-8) to 10(-4) M but was reduced by azide when the free Ca concentration exceeded 3.1 microM. The azide sensitivity and low affinity for Ca were consistent with functional mitochondria. The azide-insensitive component consisted of a small bound and a larger releasable Ca fraction. After skinning in Triton X-100, approximately 4 mumol Ca/kg wet tissue remained, which represented a tightly bound but slowly exchangeable Ca pool. The Ca content was independent of the free Ca concentration and MgATP, and it was not released with A-23187 or Ca. The Ca content of the larger fraction was a higher order function of the free Ca concentration and was released with A-23187, indicating it resided within a membrane-bounded structure. Ca uptake by the releasable fraction was increased by oxalate, MgATP, phosphocreatine, temperature, phosphate, and ruthenium red and represents Ca sequestered by the sarcoplasmic reticulum (SR) with little contribution from other Ca binding or storage sites. It is described by the coefficients Umax = 96.94 mumol/kg wet tissue, K1/2 = 0.75 microM, and Hill coefficient = 1.70. The SR in this preparation regulates cytosolic Ca concentrations under physiological conditions and can accumulate Ca by MgATP-dependent and MgATP-independent process. The larger, MgATP-dependent Ca uptake is described by the coefficients Umax = 72.87 mumol/kg wet tissue, K1/2 = 0.8 microM, and Hill coefficient = 2.09 and is consistent with Ca sequestered by the Ca-transport ATPase of smooth muscle SR. The smaller, MgATP-independent uptake is described by the coefficients Umax = 24.14 mumol/kg wet tissue, K1/2 = 0.56 microM, and Hill coefficient = 1.01 and represents Ca sequestered by an unidentified mechanism or by a subpopulation of SR.  相似文献   

18.
Abstract— RNA and DNA were determined in the axoplasm and sheath of squid giant axons. If the RNA was related to axonal length, equivalent amounts of RNA were found in the axoplasm and sheath. However, when it was expressed as a function of dry wt. or residue protein, the concentration of RNA in the sheath was four times greater than in the axoplasm. A ratio of 1·1 was found for sheath RNA/sheath DNA. Less DNA was present in the axoplasm than the amount which could be accurately determined with the methods employed.  相似文献   

19.
Video microscopy of isolated axoplasm from the squid giant axon permits correlated quantitative analyses of membrane-bounded organelle transport both in the intact axoplasm and along individual microtubules. As a result, the effects of experimental manipulations on both anterograde and retrograde movements of membrane-bounded organelles can be evaluated under nearly physiological conditions. Since anterograde and retrograde fast axonal transport are similar but distinct cellular processes, a systematic biochemical analysis is important for a further understanding of the molecular mechanisms for each. In this series of experiments, we employed isolated axoplasm of the squid to define the nucleoside triphosphate specificity for bidirectional organelle motility in the axon. Perfusion of axoplasm with 2-20 mM ATP preserved optimal vesicle velocities in both the anterograde and retrograde directions. Organelle velocities decreased to less than 50% of optimal values when the axoplasm was perfused with 10-20 mM UTP, GTP, ITP, or CTP with simultaneous depletion of endogenous ATP with hexokinase. Under the same conditions, TTP and ATP-gamma-S were unable to support significant levels of transport. None of the NTPs tested had a differential effect on anterograde vs. retrograde movement of vesicles. Surprisingly, several inconsistencies were revealed when a comparison was made between these results and nucleoside triphosphate specificities that have been reported for putative organelle motors by using in vitro assays. These data may be used in conjunction with data from well-defined in vitro assays to develop models for the molecular mechanisms of axonal transport.  相似文献   

20.
beta, beta'-Iminodipropionitrile (IDPN), a synthetic compound that selectively impairs slow axonal transport, produced a rearrangement of the axonal cytoskeleton, smooth endoplasmic reticulum, and mitochondria. Immunoperoxidase staining using an antiserum to the 68,000-dalton neurofilament subunit demonstrated a displacement of neurofilaments toward the periphery of the axons of IDPN-treated rats. This change occurred simultaneously along the entire length of the sciatic nerve. Ultrastructural morphometry of the axonal organelles confirmed the peripheral relocation of neurofilaments and also showed a displacement of microtubules, smooth endoplasmic reticulum, and mitochondria to the center of the axons. The overall density of axonal mitochondria was increased, whereas those of other organelles were not significantly changed. Axons were reduced in size by 10--24%, the large axons being more affected than the small ones. The observed rearrangement of axonal organelles may be due to an effect of IDPN on microtubule-neurofilament interactions, which could in turn explain the impairment of the slow transport. Axons in IDPN intoxication are a useful model to study the organization of the axoplasm and the mechanism of axonal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号