首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In glasshouse experiments,Microdochium bolleyi (Mb) significantly reduced infection of wheat roots by the take-all fungus,Gaeumannomyces graminis vartritici (Ggt), when inocula were dispersed in soil at ratios of 10∶1 (Mb:Ggt) or more. Spread of take-all lesions up roots from a layer of inoculum also was reduced when Mb was inoculated immediately below the crown. In contrast,Periconia macrospinosa did not control take-all even at an inoculum ratio of 100∶1. M. bolleyi interfered with growth on roots byPhialophora graminicola, a known biocontrol agent of take-all. It is suggested that this phenomenon and control of take-all by these fungi occur by competition for cortical cells that senesce in the normal course of root development.  相似文献   

2.
This research was initiated to determine whether soils suppressive to take-all of wheat caused by Gaeumannomyces graminis var. tritici (Ggt) occur in Montana, and to identify the organisms most likely involved in this suppression. From an initial screening of eight soils collected from different wheat growing areas of Montana, two were highly suppressive to take-all. Microbial characterization of these soils indicated that different mechanisms were involved in the suppression. In Larslan soil, mycoparasitism appeared to be the main mechanism. Two different fungi with exceptional ability to reduce the severity of take-all were isolated from this soil. One of these fungi could parasitize the hyphae of Ggt. Field tests with these fungi in Ggt infested soil showed increases of over 100% in both harvestble tillers and grain yield as compared to treatments without these two fungi. In tests with 48 different bacteria and 10 actinomycetes from Larslan soil, none were able to consistently reduce severity of take-all alone, or in mixtures. In Toston soil, antibiosis by actinomycetes and perhaps the involvement of Pseudomonas spp. in production of antibiotics and/or siderophores appeared to be the most likely mechanisms involved in take-all suppression. Increases in shoot dry weight over that in the Ggt infested control using mixtures of pseudomonads and actinomycetes ranged from 25% to 87%. Actinomycetes added individually or in mixtures to soil infested with Ggt consistently reduced the severity of the disease to a greater extent than did mixtures of Pseudomonas spp.  相似文献   

3.
The aim of this research was to investigate the effect of arbuscular mycorrhizal (AM) colonisation on root morphology and nitrogen uptake capacity of carob ( Ceratonia siliqua L.) under high and low nutrient conditions. The experimental design was a factorial arrangement of presence/absence of mycorrhizal fungus inoculation ( Glomus intraradices) and high/low nutrient status. Percent AM colonisation, nitrate and ammonium uptake capacity, and nitrogen and phosphorus contents were determined in 3-month-old seedlings. Grayscale and colour images were used to study root morphology and topology, and to assess the relation between root pigmentation and physiological activities. AM colonisation lead to a higher allocation of biomass to white and yellow parts of the root. Inorganic nitrogen uptake capacity per unit root length and nitrogen content were greatest in AM colonised plants grown under low nutrient conditions. A better match was found between plant nitrogen content and biomass accumulation, than between plant phosphorus content and biomass accumulation. It is suggested that the increase in nutrient uptake capacity of AM colonised roots is dependent both on changes in root morphology and physiological uptake potential. This study contributes to an understanding of the role of AM fungi and root morphology in plant nutrient uptake and shows that AM colonisation improves the nitrogen nutrition of plants, mainly when growing at low levels of nutrients.  相似文献   

4.
Influence of short-term water stress on plant growth and leaf gas exchange was studied simultaneously in a growth chamber experiment using two annual grass species differing in photosynthetic pathway type, plant architecture and phenology:Triticum aestivum L. cv. Katya-A-1 (C3, a drought resistant wheat cultivar of erect growth) andTragus racemosus (L.) All. (C4, a prostrate weed of warm semiarid areas). At the leaf level, gas exchange rates declined with decreasing soil water potential for both species in such a way that instantaneous photosynthetic water use efficiency (PWUE, mmol CO2 assimilated per mol H2O transpired) increased. At adequate water supply, the C4 grass showed much lower stomatal conductance and higher PWUE than the C3 species, but this difference disappeared at severe water stress when leaf gas exchange rates were similarly reduced for both species. However, by using soil water more sparingly, the C4 species was able to assimilate under non-stressful conditions for a longer time than the C3 wheat did. At the whole-plant level, decreasing water availability substantially reduced the relative growth rate (RGR) ofT. aestivum, while biomass partitioning changed in favour of root growth, so that the plant could exploit the limiting water resource more efficiently. The change in partitioning preceded the overall reduction of RGR and it was associated with increased biomass allocation to roots and less to leaves, as well as with a decrease in specific leaf area. Water saving byT. racemosus sufficiently postponed water stress effects on plant growth occurring only as a moderate reduction in leaf area enlargement. For unstressed vegetative plants, relative growth rate of the C4 T. racemosus was only slightly higher than that of the C3 T. aestivum, though it was achieved at a much lower water cost. The lack of difference in RGR was probably due to growth conditions being relatively suboptimal for the C4 plant and also to a relatively large investment in stem tissues by the C4 T. racemosus. Only 10% of the plant biomass was allocated to roots in the C4 species while this was more than 30% for the C3 wheat cultivar. These results emphasize the importance of water saving and high WUE of C4 plants in maintaining growth under moderate water stress in comparison with C3 species.  相似文献   

5.
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (A N) and stomatal conductance (g s) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.  相似文献   

6.
Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.  相似文献   

7.
麻栎和闽楠幼苗叶功能性状及生物量对光照和施肥的响应   总被引:1,自引:0,他引:1  
光照和养分条件是影响植物生长的重要环境因子,不同生活型植物对环境异质性的响应机制不同。以落叶阔叶树种麻栎和常绿阔叶树种闽楠幼苗为研究对象,设置2个光照梯度(全光照和45%全光照)和4个施肥梯度(不施肥、氮磷供应比为5、15和45)共8种处理,研究光照和施肥及其交互作用对麻栎和闽楠生物量和叶形态、生理及化学性状的影响,并探讨了叶功能性状和生物量的关系。结果表明:(1)光照、施肥及其交互作用对光合气体交换参数(除水分利用效率外)、叶绿素荧光参数、叶形态指标(除比叶面积外)、单位质量叶氮含量和根冠比影响显著(P<0.05)。此外,光照和施肥对地上生物量和总生物量影响显著(P<0.05)。(2)全光照显著增加了麻栎和闽楠单株总叶面积和地上、地下生物量及总生物量(P<0.05),而遮荫降低了非光化学猝灭系数、光合氮利用率和根冠比,增加了单位质量叶氮含量。(3)在全光照处理中,施肥显著增加了麻栎和闽楠水分利用效率(P<0.05);在遮荫处理中,氮磷供应比45显著增加了麻栎和闽楠净光合速率和水分利用效率(P<0.05)。(4)麻栎和闽楠在全光照中倾向于资源获取策略,在遮荫中偏向于资源保守策略。在光照和施肥处理中,麻栎和闽楠单株总叶面积与地上生物量均显著正相关(P<0.05)。总之,单株总叶面积是预测麻栎和闽楠幼苗地上生物量变化的稳定指标,施肥有助于增加低光环境下麻栎和闽楠幼苗的生态适应能力。  相似文献   

8.
The plants in arid and semiarid areas are often limited by water and nutrients. Morpho-functional adjustments to improve nutrient capture may have important implications on plant water balance, and on plant capacity to withstand drought. Several studies have shown that N and P deficiencies may decrease plant hydraulic conductance. Surprisingly, studies on the implications of nutrient limitations on water use in xerophytes are scarce. We have evaluated the effects of strong reductions in nitrogen and phosphorus availability on morphological traits and hydraulic conductance in seedlings of a common Mediterranean shrub, Pistacia lentiscus L.. Nitrogen deficiency resulted in a decrease in aboveground biomass accumulation, but it did not affect belowground biomass accumulation or root morphology. Phosphorus-deficient plants showed a decrease in leaf area, but no changes in aboveground biomass. Root length, root surface area, and specific root length were higher in phosphorus-deficient plants than in control plants. Nitrogen and phosphorus deficiency reduced both root hydraulic conductance and root hydraulic conductance scaled by total root surface area. On the other hand, nutrient limitations did not significantly affect root conductance per unit of foliar surface area. Thus, adaptation to low nutrient availability did not affect seedling capacity for maintaining water supply to leaves. The implications for drought resistance and survival during seedling establishment in semi-arid environments are discussed.  相似文献   

9.
Two pot experiments using naturally infested soil and a range of watering regimes were conducted to study the possible effect of level and frequency of wetting of hot soil (to simulate the period between growing seasons in Western Australia) on inoculum of the take-all fungus (Gaeumannomyces graminis var.tritici). In combination with the high soil temperatures, all watering regimes reduced infectivity and propagule number of the take-all fungus, this reduction being absent in dry soils.  相似文献   

10.
Peterson AG  Neofotis PG 《Oecologia》2004,141(4):629-640
In this study we apply new extensions of classical growth analysis to assess the interactive effects of elevated CO2 and differences in water availability on the leaf-nitrogen and transpiration productivities of velvet mesquite (Prosopis velutina Woot.) seedlings. The models relate transpiration productivity (biomass gained per mass of water transpired per day) and leaf-nitrogen productivity (biomass gain per unit leaf N per day) to whole-plant relative growth rate (RGR) and to each other, allowing a comprehensive hierarchical analysis of how physiological and morphological responses to the treatments interact with each other to affect plant growth. Elevated CO2 led to highly significant increases in N and transpiration productivities but reduced leaf N per unit leaf area and transpiration per unit leaf area, resulting in no net effect of CO2 on the RGR of seedlings. In contrast, higher water availability led to an increase in leaf-tissue thickness or density without affecting leaf N concentration, resulting in a higher leaf N per unit leaf area and consequently a higher assimilatory capacity per unit leaf area. The net effect was a marginal increase in seedling RGR. Perhaps most important from an ecological perspective was a 41% reduction in whole-plant water use due to elevated CO2. These results demonstrate that even in the absence of CO2 effects on integrative measures of plant growth such as RGR, highly significant effects may be observed at the physiological and morphological level that effectively cancel each other out. The quantitative framework presented here enables some of these tradeoffs to be identified and related directly to each other and to plant growth.  相似文献   

11.
Summary Soils derived from hydrothermally altered andesite support unique communities of Sierran conifers (Pinus ponderosa Laws. and P. jeffreyi Grev. and Balf.) amongst sagebrush (Artemisia tridentata Nutt.) vegetation in the western Great Basin. Plants grown in soil derived from hydrothermally altered bedrock had lower growth rates, total biomass, and net photosynthetic rates than plants grown in soil derived from unaltered andesite of the same formation. Total dry mass was 10 to 28% lower for conifers grown in altered soil whereas dry mass of Artemisia tridentata and Bromus tectorum L. was reduced by over 90%. Results from a nutrient amendment experiment indicated that low phosphorus was the dominant limitation in altered soil, and phosphorus-deficiency affected growth primarily by limiting leaf area development rather than direct inhibition of photosynthesis. The proportionately greater reduction of biomass for Artemisia and Bromus grown in altered soil supports our hypothesis that Great Basin vegetation is excluded from altered soil by intolerance to nutrient deficiency. The Sierran conifers growing on this rock type are therefore free of competition for water with Great Basin vegetation and are able to persist in an exceptionally dry climate.  相似文献   

12.
查美琴  成向荣  虞木奎  韩有志  汪成  江斌 《生态学报》2021,41(21):8556-8567
了解林木功能性状在不同培育模式下的变异和关联,对揭示林木生态适应性及其生态功能具有重要意义。选取了亚热带地区两种常见人工林树种杉木、大叶榉幼苗为研究对象,设置4种不同栽培模式的盆栽试验:单一杉木(4C),单一大叶榉(4Z)和杉木、大榉树3种混栽模式(1C3Z、2C2Z、3C1Z),研究不同混交比例对其叶、茎、根功能性状的影响。结果表明:(1)杉木总叶面积、叶干物质含量、净光合速率、蒸腾速率和气孔导度在混栽模式下显著减小,而比叶面积显著增大;根长和比根长在不同处理间无显著差异;叶、茎、根生物量和单株总生物量在混栽模式下显著低于4C处理,不同混栽模式之间差异不显著。(2)大叶榉单叶面积在3C1Z处理下最高,总叶面积随大叶榉在树种组成中所占比例的降低而逐渐增大,比叶面积在不同处理间无显著差异,叶干物质含量、净光合速率、蒸腾速率和气孔导度均在2C2Z处理下最大,而瞬时水分利用效率在2C2Z处理下最小;根长在3C1Z处理下显著增大,比根长在不同处理间无显著差异;叶、茎、根生物量和单株总生物量随大叶榉在树种组成中所占比例的降低而逐渐增大。综合来看,杉木和大叶榉混合处理中杉木种间竞争大于种内竞争,而大叶榉相反;随杉木在混栽处理中比例减少,其主要通过增加比叶面积,提高净光合速率,减少茎生物量积累来适应种间竞争关系;而大叶榉随其在混栽处理中比例的减少,显著增加叶面积和根长来提高资源利用率,减少地下资源分配,提高地上茎生物量积累。因此,树种混交比例将显著影响林木功能性状及其生物量积累,选择适宜混交比例对混交林可持续经营具有重要意义。  相似文献   

13.
Wheat plants (Triticum aestivum var. INTA x2018;Cinco Cerros’) were grown in pots with fine sand under a rain-out shelter to assess their response to a water shortage spanning most of the growth cycle. Three watering treatments, based on different thresholds of plant-available water, were started 8 weeks after sowing and maintained for 10 weeks. After allowing recovery from any short-term embolism, stem-segment and root-system hydraulic conductances were then measured by standard low-pressure methods. Stress treatments reduced, as compared to controls, tiller number (by 31% and 41% for moderate and intense drought, respectively), total plant biomass (by 21% and 52%) and total plant leaf area (43% and 68%). The capacity of stems to transport water was reduced only by the most intense treatment (and then by no more than 50%), but root-system hydraulic conductance (k R) was strongly reduced by both treatments (37% and 80%, respectively). The transport capacity of belowground structures decreased not only on an absolute basis (k R), but also per unit root mass (K RS: 51% and 83%) and per unit of leaf area (K RL: 23% and 73%). Simulation of maximum transpiration under different soil and plant water conditions indicate that these changes in plant hydraulics had a significant impact on either transpiration at the leaf level or leaf water status for a given transpiration rate.  相似文献   

14.
Arsenic (As) contamination of irrigation water represents a major constraint to Bangladesh agriculture. While arbuscular mycorrhizal (AM) fungi have their most significant effect on P uptake, they have also been shown to alleviate metal toxicity to the host plant. This study examined the effects of As and inoculation with an AM fungus, Glomus mosseae, on lentil (Lens culinaris L. cv. Titore). Plants were grown with and without AM inoculum for 9 weeks in a sand and terra green mixture 50:50 v/v and watered with five levels of As (0, 1, 2, 5, 10 mg As L−1 arsenate). Inoculum of Rhizobium leguminosarum b.v. Viceae strain 3841 was applied to all plants. Plants were fed with modified Hoagland solution (1/10 N of a full-strength solution and without P). Plant height, leaf number, pod number, plant biomass and shoot and root P concentration/offtake increased significantly due to mycorrhizal infection. Plant height, leaf/ pod number, plant biomass, root length, shoot P concentration/offtake, root P offtake and mycorrhizal infection decreased significantly with increasing As concentration. However, mycorrhizal inoculation reduced As concentration in roots and shoots. This study shows that growing lentil with compatible AM inoculum can minimise As toxicity and increase growth and P uptake.  相似文献   

15.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

16.
It has been suggested that abscisic acid (ABA) regulates a centralized response of plants to low soil resource availability that is characterized by decreased shoot growth relative to root growth, decreased photosynthesis and stomatal conductance, and decreased plant growth rate. The hypothesis was tested that an ABA-deficient mutant of tomato (flacca; flc) would not exhibit the same pattern of down-regulation of photosynthesis, conductance, leaf area and growth, as well as increased root/shoot partitioning, as its near isogenic wild-type in response to nitrogen or water deficiency, or at least not exhibit these responses to the same degree. Plants were grown from seed in acid-washed sand and exposed to control, nutrient stress, or water stress treatments. Additionally, exogenous ABA was sprayed onto the leaves of a separate group of flc individuals in each treatment. Growth analysis, based on data from frequent harvests of a few individuals, was used to assess the growth and partitioning responses of plants, and gas exchange characteristics were measured on plants throughout the experiment to examine the response of photosynthesis and stomatal conductance. Differences in growth, partitioning and gas exchange variables were found between flc and wild-type individuals, and both nutrient and water treatments caused significant reductions in relative growth rate (RGR) and changes in biomass partitioning. Only the nutrient treatment caused significant reductions in photosynthetic rates. However, flc and wild-type plants responded identically to nutrient and water stress for all but one of the variables measured. The exception was that flc showed a greater decrease in the relative change in leaf area per unit increase of plant biomass (an estimate of the dynamics of leaf area ratio) in response to nutrient stress—a result that is opposite to that predicted by the centralized stress response model. Furthermore, addition of exogenous ABA to flc did not significantly alter any of the responses to nutrient and water stress that we examined. Although it was clear that ABA regulated short-term stomatal responses, we found no evidence to support a pivotal role for ABA, at least absolute amounts of ABA, in regulating a centralized whole-plant response to low soil resource availability.  相似文献   

17.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

18.
干旱胁迫与复水对块根紫金牛生理特性的影响   总被引:1,自引:0,他引:1  
以岩溶特有药用植物块根紫金牛为试材,研究土壤水分胁迫及复水条件下其叶片光合参数、相对含水量、质膜透性、渗透调节物质含量的变化特性。结果表明:水分胁迫下,块根紫金牛的叶片净光合速率、气孔导度和蒸腾速率均几乎接近零点,但胞间CO2浓度上升,即非气孔因素限制是光合速率下降的主要原因。水分胁迫不影响块根紫金牛单位面积的总叶绿素和类胡萝卜素含量,但干旱处理的Chl a/b和Car/Chl分别显著低于和高于对照。水分胁迫下,块根紫金牛的叶片相对含水量、相对电导率和丙二醛含量显著增大,即膜系统受到一定的伤害;块根紫金牛叶片脯氨酸含量显著降低,可溶性蛋白含量无显著变化,可溶性糖含量显著增大,但增大幅度不大,说明其在干旱胁迫下的渗透调节能力较弱。复水处理后,块根紫金牛全部指标均能恢复到对照水平,说明其对干旱胁迫较为敏感,主要采取避旱策略。  相似文献   

19.
Z.-Z. Xu  G.-S. Zhou 《Plant and Soil》2005,269(1-2):131-139
Water deficit and high temperature are important environmental factors restricting plant growth and photosynthesis. The two stresses often occur simultaneously, but their interactions on photosynthesis and nitrogen level have been less studied. In the present experiment, we measured photosynthetic parameters, stomatal density, and nitrogen levels, as well as soluble sugar content of leaves of a perennial grass, Leymus chinensis, experiencing two day/night temperature regimes of 30/20 °C and 30/25 °C, and five different soil moisture contents (the soil relative-water content ranged from 80% to 25%). Leaf relative water content, leaf biomass, whole plant biomass, the ratio between the leaf biomass and total plant biomass, and the photosynthetic rate, as well as water-use efficiency decreased at high night temperature, especially under severe water stress conditions. Stomatal index was also increased by soil water stress except very severe water stress, and high nocturnal temperature decreased the leaf stomatal index under soil water stress. Nocturnal warming decreased nitrogen concentration in the leaves and increased it in the roots, particularly when plants were subjected to severe water stress. There were significant positive correlations between the photosynthetic rate and both soluble sugar concentration and nitrogen concentration at low nocturnal temperature. It is suggested that nocturnal warming significantly exacerbates the adverse effects of soil water stress, and their synergistic interactions might reduce the plant productivity and constrain its distribution in the region dominated by L. chinensis, based on predictions of global climate change.  相似文献   

20.
焦晓林  毕晓宝  高微微 《生态学报》2015,35(9):3006-3013
西洋参(Panax quinquefolium L.)栽培中存在严重的连作障碍现象,前期发现p-香豆酸在以滤纸片为基质的条件下,能够显著抑制西洋参胚根的生长。为了明确p-香豆酸在土壤基质中对种胚的化感活性以及对成株西洋参生长的作用及生理机制,以自然土壤为基质,观察p-香豆酸作用后种胚的生长情况;采用室内水培试验,观察p-香豆酸作用下2年生西洋参种根从出苗至结果期的生长及部分生理指标的变化。种胚生长实验在土壤中分别添加0.0024、0.012、0.06、0.3、1.5、7.5 mg/g的p-香豆酸,处理7 d后测定西洋参种胚的胚根长和胚芽长。水培试验中全营养液中分别添加0.012 mg/mL、0.06 mg/mL、0.3 mg/mL p-香豆酸,处理后每隔5 d测定植株叶片展开情况、株高、冠幅等生长指标;于展叶期(10 d)、现蕾期(20 d)、结果期(30 d)测定地上部分及新生须根的生物量,同时测定新生须根苯丙氨酸解氨酶(PAL)活力;叶片完全展开后测定植株净光合速率(Pn)、表观电子传递速率(ETR)和最大光化学效率(Fv/Fm)等光合特性参数。结果表明,土壤中添加0.0024-7.5 mg/g p-香豆酸西洋参胚根长度降低28.52%-100%,胚芽长度降低1.09%-100%,并呈现一定的剂量抑制效应。实验浓度内的p-香豆酸可显著抑制西洋参植株地上部分生长,推迟展叶期;结果期地上部生物量比对照降低17.17%-54.55%(P < 0.05,Dunnett-t test);同时,叶片的PnETR受到抑制(P < 0.05),但Fv/Fm不变;对须根的影响主要表现为0.06 mg/mL p-香豆酸处理组在展叶期PAL酶活力提高69.05%,之后PAL活力和生物量均比对照下降,浓度增加至0.3 mg/mL时整个培养期内PAL酶活力和生物量均低于对照。由此推论,根系环境中的p-香豆酸在自然土壤中对西洋参种胚具有显著抑制其生长的化感作用;对成株西洋参的作用主要为抑制地上部分生长,并通过降低成株西洋参叶片光合能力,从而表现出明显的化感作用,0.06 mg/mL p-香豆酸诱导须根PAL酶活力先升高再降低并最终降低生物量的结果也表明p-香豆酸是西洋参根系生长的胁迫因素。结果证实p-香豆酸对西洋参种胚和成株的生长均具有自毒作用,其抑制生长的生理机制在于抑制叶片的光合作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号