首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metalloprotease PrtV from Vibrio cholerae   总被引:2,自引:0,他引:2  
The Vibrio metalloprotease PrtV was purified from the culture supernatant of a Vibrio cholerae derivative that is deficient in several other secreted peptidases, including the otherwise abundant hemagglutinin/protease HapA. The PrtV is synthesized as a 102 kDa protein, but undergoes several N- and C-terminal processing steps during V. cholerae envelope translocation and prolonged incubation. Purified V. cholerae PrtV protease forms of 81 or 73 kDa were stabilized by calcium ions. Removal of calcium resulted in further rapid autoproteolysis. The two major products of autoproteolysis of the PrtV protease were approximately 37 and 18 kDa and could not be separated under non-denaturing conditions, indicating they are interacting domains. In an assay using cultured cells of the human intestinal cell line HCT8, the PrtV protein showed a cytotoxic effect leading to cell death. Using human blood plasma as a source of potential substrates of mammalian origin for the PrtV protease, we found that the extracellular matrix components fibronectin and fibrinogen were degraded by the enzyme. Additional tests with individual protein substrates revealed that plasminogen was also a possible target for the PrtV protease.  相似文献   

2.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

3.
Vibrio vulnificus has been known to secrete one form of metalloprotease VvpE (45 kDa) that is cleaved to 34 kDa-VvpE and 11 kDa-C-terminal propeptide via extracellular autoproteolysis. However, we found that extracellular secretion of both the 34 and 45 kDa forms of VvpE began in the early growth phase; moreover, 34 kDa-VvpE existed as the major form in V. vulnificus cell lysates and culture supernatants. In addition, extracellular secretion of both 34 and 45 kDa-VvpE was blocked by mutation of the pilD gene, which encodes for the type IV leader peptidase/N-methyltransferase of the type II general secretion system, and the blocked VvpE secretion was recovered by in trans-complementation of the wild-type pilD gene. These results indicate that 34 kDa-VvpE is the major form secreted along with 45 kDa-VvpE from the early growth phase via the PilD-mediated type II general secretion system.  相似文献   

4.
Proteolytic processing plays a fundamental role in gene expression of a recently characterized viral-like double-stranded RNA associated with biological control of the chestnut blight fungus. Polypeptide p29, a papain-like protease, was shown to autocatalytically release itself from the NH2 terminus of the polyprotein specified by the first of two encoded open reading frames, ORF A (Choi, G. H., Shapira, R., and Nuss, D. L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1167-1171; Choi, G. H., Pawlyk, D. M., and Nuss, D. L. (1991) Virology 183, 747-752). The characterization of a second autocatalytic protease, p48, which is encoded by ORF B, is the subject of this report. Deletion analysis revealed that the catalytic domain resides within the carboxyl-terminal region, while site-specific mutational analysis identified Cys-341 and His-388 as residues essential for autoproteolysis. Autoproteolytic processing by p48 was also demonstrated when expressed in Escherichia coli and microsequence analysis of the recovered COOH-terminal cleavage product indicated that cleavage occurred between Gly-418 and Ala-419. The requirements for a functional cleavage site, including confirmation of the cleavage dipeptide, were defined by amino acid substitution analysis. Similarities between p29 and p48 suggest that the respective coding domains could have arisen as a result of a gene duplication event.  相似文献   

5.
The Hemophilus influenzae Hap adhesin is an autotransporter protein that undergoes an autoproteolytic cleavage event resulting in extracellular release of the adhesin domain (Hap(s)) from the membrane-associated translocator domain (Hap(beta)). Hap autoproteolysis is mediated by Ser(243) and occurs at LN1036-7 and to a lesser extent at more COOH-terminal alternate sites. In the present study, we sought to further define the mechanism of Hap autoproteolysis. Site-directed mutagenesis of residues His(98) and Asp(140) identified a catalytic triad conserved among a subfamily of autotransporters and reminiscent of the SA (chymotrypsin) clan of serine proteases. Amino-terminal amino acid sequencing of histidine-tagged Hap(beta) species and site-directed mutagenesis established that autoproteolysis occurs at LT1046-7, FA1077-8, and FS1067-8, revealing a consensus target sequence for cleavage that consists of ((Q/R)(A/S)X(L/F)) at the P4 through P1 positions. Examination of a recombinant strain co-expressing a Hap derivative lacking all cleavage sites (HapDelta1036-99) and a Hap derivative lacking proteolytic activity (HapS243A) demonstrated that autoproteolysis occurs by an intermolecular mechanism. Kinetic analysis of Hap autoproteolysis in bacteria expressing Hap under control of an inducible promoter demonstrated that autoproteolysis increases as the density of Hap precursor in the outer membrane increases, confirming intermolecular cleavage and suggesting a novel mechanism for regulation of bacterial adherence and microcolony formation.  相似文献   

6.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

7.
A fibrinolytic enzyme was purified from the cultured mycelia of Armillaria mellea by ion-exchange chromatography followed by gel filtration, and was designated A. mellea metalloprotease (AMMP). The purification protocol resulted in a 627-fold purification of the enzyme, with a final yield of 6.05%. The apparent molecular mass of the purified enzyme was estimated to be 21kDa by SDS-PAGE, fibrin-zymography and gel filtration chromatography, which revealed a monomeric form of the enzyme. The optimal reaction pH value and temperature were, pH 6.0, and 33 degrees C, respectively. This protease effectively hydrolyzed fibrinogen, preferentially digesting the Aalpha-chain over the Bbeta- and r-chains. Enzyme activity was inhibited by Cu(2+) and Co(2+), but enhanced by the addition of Ca(2+) and Mg(2+) ions. Furthermore, AMMP activity was potently inhibited by EDTA, and was found to exhibit a higher specificity for the substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 24 amino acid residues of the N-terminal sequence were MFSLSSRFFLYTLCL SAVAVSAAP, which is extremely similar to the 24 amino acid residues of the N-terminal sequence of the fruiting body of A. mellea. These data suggest that the fibrinolytic enzyme AMMP, obtained from the A. mellea exhibits a profound fibrinolytic activity. The mycelia of A. mellea may thus represent a potential source of new therapeutic agents to treat thrombosis.  相似文献   

8.
Human glucuronate 2-sulphatase (GAS), which is involved in the degradation of the glycosaminoglycans heparan sulphate and chondroitin 6-sulphate, was purified almost 2,000,000-fold to homogeneity in 8% yield from liver with a four-step six-column procedure, which consists of a concanavalin A-Sepharose/Blue A-agarose coupled step, a DEAE-Sephacel/octyl-Sepharose coupled step, CM-Sepharose chromatography and gel-permeation chromatography. Although more than 90% of GAS activity had a pI of greater than 7.5, other forms with pI values of 5.8, 5.3, 4.7 and less than 4.0 were also present. The pI greater than 7.5 form of GAS had a native molecular mass of 63 kDa. SDS/polyacrylamide-gel-electrophoretic analysis resulted in two polypeptide subunits of molecular mass 47 and 19.5 kDa. GAS was active towards disaccharide substrates derived from heparin [O-(beta-glucuronic acid 2-sulphate)-(1----4)-O-(2,5)-anhydro[1-3H]mannitol 6-sulphate (GSMS)] and chondroitin 6-sulphate [O-(beta-glucuronic acid 2-sulphate-(1----3)-O-(2,5)-anhydro[1-3H]talitol 6-sulphate (GSTS)]. GAS activity towards GSMS and GSTS was at pH optima of 3.2 and 3.0 respectively with apparent Km values of 0.3 and 0.6 microM respectively and corresponding Vmax values of 12.8 and 13.7 mumol/min per mg of protein respectively. Sulphate and phosphate ions are potent inhibitors of enzyme activity. Cu2+ ions stimulated, whereas EDTA inhibited enzyme activity. It was concluded that GAS is required together with a series of other exoenzyme activities in the lysosomal degradation of glycosaminoglycans containing glucuronic acid 2-sulphate residues.  相似文献   

9.
A comparative study was made of inactivation by gamma- and beta-radiation of alpha-chymotrypsin within a wide range of its initial concentrations (from 10(-4) to 10(-7) M). The regularities of gamma- and beta-inactivation are the same, and distinctions, if any, are due to a greater radiation effect of beta-rays on dilute enzyme solutions (less than or equal to 5 X 10(-6) M). The inactivation of alpha-chymotrypsin by radiation proceeds either via primary molecule unfolding followed by degradation of the most accessible and radiosensitive amino acid residues (pH 7.8) or, to a greater extent, via direct disruption of amino acid residues which can probably be random (pH 3.0). Calcium ions stabilize, on the whole, the enzyme molecule upon irradiation.  相似文献   

10.
The methionine residues at positions 17, 104, 208, 214, 292, 315, 324, and 446 in the primary amino acid sequence of a truncated Bacillus sp. TS-23 alpha-amylase (His(6)-tagged BLADeltaNC) was changed to oxidative-resistant leucine by site-directed mutagenesis. The mutant enzymes with an apparent molecular mass of approximately 54 kDa were overexpressed in recombinant Escherichia coli. The specific activity for Met315Leu and Met446Leu was decreased by more than 76%, while Met17Leu, Met104Leu, Met208Leu, Met214Leu, Met292Leu, and Met324Leu showed 247, 128, 37, 260, 232, and 241%, respectively, higher activity than the wild-type enzyme. In comparison with wild-type enzyme, a lower K(m) value was observed for all mutant enzymes. The 3.2- and 4.5-fold increases in the catalytic efficiency (k(cat)/K(m)) for Met208Leu and Met324Leu, respectively, were partly contributed by a 68% and 38% decrease in K(m) values. Wild-type enzyme was sensitive to chemical oxidation, but Met208Leu was stable even in the presence of 500 mM H(2)O(2). Except for Met214Leu, which was quite sensitive to H(2)O(2), the other mutants showed a profile of oxidative inactivation similar to that of the wild-type enzyme. These observations indicate that the oxidative stability of His(6)-tagged BLADeltaNC can be improved by replacement of the critical methionine residue with leucine.  相似文献   

11.
SEA domains are ubiquitous in large proteins associated with highly glycosylated environments. Certain SEA domains undergo intramolecular proteolysis involving a nucleophilic attack of a serine hydroxyl group on the preceding glycine carbonyl. The mucin-1 (MUC1) SEA domain has been extensively investigated as a model of intramolecular proteolysis. Since neither a general base, a general acid, nor an oxyanion hole could be identified in MUC1 SEA, it has been suggested that proteolysis is accelerated by a non-planarity of the scissile peptide bond imposed by protein folding. A reactant distorted peptide bond has been also invoked to explain the autoproteolysis of several unrelated proteins. However, the only evidence of peptide distortion in MUC1 SEA stems from molecular dynamic simulations of the reactant modeled upon a single NMR structure of the cleaved product. We report the first high-resolution X-ray structure of cleaved MUC1 SEA. Structural comparison with uncleaved SEA domains suggests that the number of residues evolutionarily inserted in the cleaved loop of MUC1 SEA precludes the formation of a properly hydrogen-bonded beta turn. By sequence analysis, we show that this conformational frustration is shared by all known cleaved SEA domains. In addition, alternative conformations of the uncleaved precursor could be modeled in which the scissile peptide bond is planar. The implications of these structures for autoproteolysis are discussed in the light of the previous research on autoproteolysis.  相似文献   

12.
The gene for protein H, a novel bacterial cell wall protein with specific affinity for human IgG Fc, was cloned from a group A Streptococcus and expressed in Escherichia coli. Recombinant E. coli cells produced two forms of a human IgG Fc-binding protein, one with an apparent Mr of 42 kDa in a periplasmic fraction and the other with an apparent Mr of 45 kDa in a mixed fraction of cytoplasms and membranes. Both 42-kDa and 45-kDa protein preparations similarly bound to human IgG1 to IgG4, human IgG Fc, and rabbit IgG, but not to IgG of mouse, rat, bovine, sheep, goat, and human IgA, IgD, IgE, and IgM. The complete nucleotide sequence of the cloned 1.8-kb DNA fragment was determined. An open reading frame encoded a hypothetical protein of 376 amino acid residues (Mr = 42,498). The N-terminal amino acid sequence, consisting of 41 residues, which was removed post-translationally had typical characteristics of Gram-positive bacterial signal peptides. Thus, the mature form of protein H was suggested to consist of 335 residues (Mr = 38,162). There were 3 repeated sequences consisting of 42 residues that were highly homologous to those of protein Arp, an IgA-binding streptococcal cell wall protein, and streptococcal M6 and M24 proteins. The C-terminal amino acid sequence consisting of 93 residues, directly following the repeated sequences, was also highly homologous to that of M6 and M24 proteins. No sequence homology was found between protein H and protein A or protein G, two other IgG-binding bacterial cell wall proteins.  相似文献   

13.
P-glycoprotein is an energy-dependent drug efflux pump with broad specificity for hydrophobic antitumor agents such as vinblastine, doxorubicin, and taxol. We have previously shown that [3H]azidopine and [125I] iodoaryl azidoprazosin, which are photoaffinity probes for the alpha 1-subunit of the L-type calcium channel and alpha 1-adrenergic receptor, respectively, specifically interact with P-glycoprotein, partially reverse multidrug resistance, and bind to a 6-kDa common domain in the 140-kDa P-glycoprotein molecule (Greenberger, L., Yang, C.-P. H., Gindin, E., and Horwitz, S. B. (1990) J. Biol. Chem. 265, 4394-4401). An immunological approach was used to identify the position of photoaffinity drug-binding domains in P-glycoprotein. Analysis was done with a series of site-specific rabbit polyclonal antibodies to peptides that mimic domains in the mouse mdr1b gene product. The antibodies were made against amino acid residues 269-284, 356-373, 665-682, 740-750, 907-924, and 1203-1222. Upon trypsin digestion, cleavage products of 95 and 55 kDa were obtained, which after further digestion migrated at 60 and 40 kDa, respectively. The 40-kDa fragment was recognized by the antibodies to residues 1203-1222 and 919-1276, while the 55-kDa fragment was recognized by these antibodies plus antibodies to residues 740-750 and 907-924. In contrast, the 95- and 60-kDa trypsin fragments were recognized only by the antibody to residues 269-284. The 55- and 40-kDa fragments, as well as the 95- and 60-kDa fragments, were major photolabeled species after digestion of P-glycoprotein. The previously identified 6-kDa photo-labeled P-glycoprotein fragment was within the 40-kDa trypsin fragment. These data suggest that there are two photoaffinity drug-binding domains in P-glycoprotein encoded by mouse mdr1b. The C-terminal site most likely resides within or in close proximity to putative transmembrane domains 11-12.  相似文献   

14.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

15.
Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10(-3) M H(2)O(2). One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10(-3)M H(2)O(2) oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H(2)O(2) utilising (45)calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n=6) and healthy controls (n=6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H(2)O(2)-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed l-phenylalanine-uptake in the epidermis of acute vitiligo.  相似文献   

16.
The extrinsic 12 kDa protein in red algal photosystem II (PSII) functions to minimize the chloride and calcium requirement of oxygen-evolving activity [Enami et al. (1998) Biochemistry 37: 2787]. In order to identify functional domains of the 12 kDa protein, we prepared the 12 kDa protein lacking N-terminal peptides or C-terminal peptides or both by limited proteolysis and directed mutagenesis. The resulting 12 kDa protein fragments were examined for their binding and functional properties by reconstitution experiments. (1) A peptide fragment from Gly-6 to C-terminus of the 12 kDa protein was prepared by V8 protease. This fragment rebound to PSII completely, and it reactivated oxygen evolution partially in the absence of Cl(-) and Ca(2+) ions but significantly in the presence of Cl(-) ion. (2) A peptide from Leu-10 to Phe-83 was obtained by chymotrypsin treatment. This peptide rebound to PSII effectively, but the rebinding did not restore oxygen evolution in both the absence and presence of Cl(-) and Ca(2+) ions. (3) Two mutant proteins, one lacking five residues and the other lacking nine residues of the N-terminus, were able to bind to PSII effectively. Recovery of oxygen evolution by their binding was almost the same as that reconstituted with the V8 protease-treated peptide. (4) Three mutant proteins lacking ten, seven or three residues of the C-terminus effectively rebound to PSII, but their binding did not result in recovery of the oxygen evolution. In contrast, reconstitution with a mutant protein lacking one residue of the C-terminus showed the same high restoration of oxygen evolution as reconstitution with the full-length 12 kDa protein. (5) These results indicate that two residues from lysine of the C-terminus of the 12 kDa protein constitute an important domain for minimizing the chloride and calcium requirement of oxygen evolution. In addition, the N-terminus of the protein, at least five residues, has a secondary function for the chloride requirement.  相似文献   

17.
Human red cells from donor Pj carry the Sta blood group antigen and an unusual sialoglycoprotein of 24 kDa molecular mass tentatively identified as a hybrid molecule of the anti-Lepore type [Blanchard et al. (1982) Biochem. J. 203, 419-426]. This component is resistant towards proteinase treatment and was purified from trypsin-treated and chymotrypsin-treated Pj erythrocytes. The molecule is composed of 99 amino acid residues whose alignment was established following manual and automatic sequencing of cyanogen bromide, trypsin, chymotrypsin and V8 proteinase peptides. The polypeptide chain comprises residues 1-26/28 of glycophorin B and residues 59/61-131 of glycophorin A. The sugar composition resembles that of glycophorin B, indicating the absence of an N-glycosidic chain. Identical sequences were obtained from analyses of the 24-kDa component purified from unrelated St(a+) donors. These results support the hypothesis that glycoprotein Pj represents a B-A hybrid molecule which is encoded by a new gene product resulting from an unequal crossing-over between the genes coding for the polypeptide chains of the glycophorins A and B. The novel molecule carries both N and Sta blood group antigens. The N activity is clearly understandable from the sequence of the five N-terminal residues (Leu and Glu at positions 1 and 5 respectively). Inhibition studies with the untreated and chemically modified hybrid glycoprotein indicate that the Sta determinant is located within residues approximately 25-30 of the molecule, which corresponds to the newly formed sequence found neither in glycophorin A nor in glycophorin B.  相似文献   

18.
Saposin C is a sphingolipid activator protein of 8.5 kDa that activates lysosomal glucocerebrosidase. Previously, we synthesized and characterized a synthetic full-length human saposin C protein that displays 85% of the activity of the native saposin C. In this study we use shorter synthetic peptides derived from the saposin C sequence to map binding and activation sites. By determining the activity and kinetic constant (Kact) values of these peptides, we have identified two functional domains, each comprising a binding site adjacent to or partially overlapping with an activation site. Domains 1 and 2 are located within amino acid positions 6-34 and 41-60, respectively. The activation sites span residues 27-34 and 41-49, whereas binding sites encompass residues 6-27 and 45-60. Peptides containing the sequences of either domain displayed 90% of the activity of the full-length synthetic saposin C. Domain 2, however, bound to glucocerebrosidase by at least an order of magnitude more strongly than domain 1. Binding sites within these domains contain sequences that are excellent candidates for forming amphipathic helical structures. Competition assays demonstrated that the binding of one domain to glucocerebrosidase prevents binding of the other domain, and that saposin A and saposin C bind to the same sites on glucocerebrosidase. A model predicting a saposin C:glucocerebrosidase complex with a stoichiometry of 4:2, respectively, is presented.  相似文献   

19.
We compared the secondary spermatogonia and the primary spermatocytes of Xenopus for the proteins in their microsomal fractions and identified a newly synthesized protein (94 kDa) and three other proteins (99, 85, and 72 kDa) which increased their amount after entering the meiotic phase. These four proteins were used as antigens to produce polyclonal antibody which was found to react with the four proteins as well as two other proteins (208 and 60 kDa). Immunoscreening of Xenopus testis cDNA library with this polyclonal antibody yielded two cDNA clones (Xmegs and Xtr) encoding novel proteins. Xmegs mRNA was specifically expressed in the spermatogenic cells from the mid-pachytene stage to completion of two meiotic divisions. The putative Xmegs protein contained 19 tandem repeats of 26 amino acid residues rich in proline as well as potential phosphorylation sites (i.e., serine and threonine residues). Around this repetitive area, we found five PEST sequences known as a proteolytic signal to target protein for degradation. The presence of PEST sequences was believed to allow protein levels to closely parallel mRNA abundance. These results suggested the possible role of this novel protein in the regulation of two meiotic divisions specific to the spermatogenesis in a phosphorylation- and/or dephosphorylation-dependent manner. On the other hand, Xtr mRNA was expressed in both spermatogenic and oogenic cells except for round spermatids and the later stage cells. This mRNA was also expressed in the early stage embryos and its amount was kept constant from the St. I oocyte to the gastrula stage and decreased thereafter. The putative Xtr protein contained four complete and one partial tudor-like domains that were discovered in Drosophila tudor protein which plays an important role in PGC differentiation and abdominal segmentation. The characteristic expression profile of Xtr and the protein structure similar to the Drosophila tudor protein suggested its possible role in the progression of meiosis and PGC differentiation.  相似文献   

20.
1. The structure of chondroitin/dermatan and heparan-sulphate chains from various proteoglycan populations derived from cultured human skin fibroblasts have been examined. Confluent cell cultures were biosynthetically labelled with [3H]-glucosamine and 35SO4(2-), and proteoglycans were purified according to buoyant density, size and charge density [Schmidtchen, A., Carlstedt, I., Malmstr?m, A. & Fransson, L.-A. (1990) Biochem. J. 265, 289-300]. Some proteoglycan fractions were further fractionated according to hydrophobicity on octyl-Sepharose in Triton X-100 gradients. The glycosaminoglycan chains, intact or degraded by chemical or enzymic methods were then analysed by gel chromatography on Sepharose CL-6B, Bio-Gel P-6, ion exchange HPLC and gel electrophoresis. 2. Three types of dermatan-sulphate chains were identified on the basis of disaccharide composition and chain length. They were derived from the large proteoglycan, two small proteoglycans and a cell-associated proteoglycan with core proteins of 90 kDa and 45 kDa. Intracellular, free dermatan-sulphate chains were very similar to those of the small proteoglycans. 3. Heparan-sulphate chains from different proteoglycans had, in spite of small but distinct differences in size, strikingly similar compositional features. They contained similar amounts of D-glucuronate, L-iduronate (with or without sulphate) and N-sulphate groups. They all displayed heparin-lyase-resistant domains with average molecular mass of 10-15 kDa. The heparan-sulphate chains from proteoglycans with 250-kDa and 350-kDa cores were the largest greater than 50 kDa), containing an average of four or five domains, in contrast to heparan-sulphate chains from the small heparan-sulphate proteoglycans which had average molecular mass of 45 kDa and consisted of three or four such domains. Free, cell-associated heparan-sulphate chains were heterogeneous in size (5-45 kDa). 4. These results suggest that the core protein may have important regulatory functions with regard to dermatan-sulphate synthesis. On the other hand, synthesis of heparan sulphate may be largely controlled by the cell that expresses a particular proteoglycan core protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号