首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Menkes disease ATPase (MNK) is a copper transporter that localizes to the mammalian trans-Golgi network (TGN) and shows substantial co-localization wih a ubiquitous TGN resident protein and marker, TGN46. We tested our hypothesis that these two TGN residents and integral membrane proteins are localized to biochemically distinct TGN sub-compartments using constitutively active mutant proteins and drugs that disrupt membrane traffic, lumenal pH and the cellular cytoskeleton. The pH-disrupting agent, monensin, causes MNK to be more diffusely distributed with partial separation of staining patterns for these two TGN residents. Expression of a constitutively active Rho-kinase (ROCK-KIN), which causes formation of juxta-nuclear astral actin arrays, also effects separation of MNK and TGN46 staining patterns. Treatment of ROCK-KIN expressing cells with latrunculin B, an actin-depolymerizing agent, causes complete overlap of MNK and TGN46 staining patterns with concomitant disappearance of polymerized actin. When microtubules are depolymerized in ROCK-KIN expressing cells by nocodazole, both MNK and TGN46 are found in puncate structures throughout the cell. However, a substantial proportion of MNK is still found in a juxta-nuclear location in contrast to TGN46. Actin distribution in these cells reveals that juxta-nuclear MNK is distinct to the astral actin clusters in ROCK-KIN expressing cells where the microtubules were depolymerized. The TGN to cell-surface transport of MNK requires both actin and microtubules networks, whilst the constitutive trafficking of proteins is independent of actin. Taken together, our findings indicate that at least two TGN sub-domains are regulated by separate cytoskeletal dynamics involving actin and tubulin.  相似文献   

2.
3.
Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.  相似文献   

4.
When a kinase inactive form of Protein Kinase D (PKD-K618N) was expressed in HeLa cells, it localized to the trans-Golgi network (TGN) and caused extensive tubulation. Cargo that was destined for the plasma membrane was found in PKD-K618N-containing tubes but the tubes did not detach from the TGN. As a result, the transfer of cargo from TGN to the plasma membrane was inhibited. We have also demonstrated the formation and subsequent detachment of cargo-containing tubes from the TGN in cells stably expressing low levels of PKD-K618N. Our results suggest that PKD regulates the fission from the TGN of transport carriers that are en route to the cell surface.  相似文献   

5.
We have measured the transport of de novo synthesized fluorescent analogs of sphingomyelin and glucosylceramide from the trans-Golgi network (TGN) to the apical membrane in basolaterally permeabilized Madin-Darby canine kidney (MDCK) cells. Sphingolipid transport was temperature, ATP and cytosol dependent. Introduction of bovine serum albumin (BSA), which binds fluorescent sphingolipid monomer, into the permeabilized cells, did not affect lipid transport to the apical membrane. Both fluorescent sphingomyelin and glucosylceramide analogs were localized to the lumenal bilayer leaflet of isolated TGN-derived vesicles. These results strongly suggest that both sphingolipids are transported from the TGN to the apical membrane via vesicular traffic.  相似文献   

6.
The Golgi apparatus (GA) is the organelle where complex glycan formation takes place. In addition, it is a major sorting site for proteins destined for various subcellular compartments or for secretion. Here we investigate beta1,4-galactosyltransferase 1 (galT) and alpha2,6-sialyltransferase 1 (siaT), two trans-Golgi glycosyltransferases, with respect to their different pathways in monensin-treated cells. Upon addition of monensin galT dissociates from siaT and the GA and accumulates in swollen vesicles derived from the trans-Golgi network (TGN), as shown by colocalization with TGN46, a specific TGN marker. We analyzed various chimeric constructs of galT and siaT by confocal fluorescence microscopy and time-lapse videomicroscopy as well as Optiprep density gradient fractionation. We show that the first 13 amino acids of the cytoplasmic tail of galT are necessary for its localization to swollen vesicles induced by monensin. We also show that the monensin sensitivity resulting from the cytoplasmic tail can be conferred to siaT, which leads to the rapid accumulation of the galT-siaT chimera in swollen vesicles upon monensin treatment. On the basis of these data, we suggest that cycling between the trans-Golgi cisterna and the trans-Golgi network of galT is signal mediated.  相似文献   

7.
A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.  相似文献   

8.
Abundant biochemical and genetic evidence suggests that presenilins are catalytic components of gamma-secretase, the protease responsible for generating the Alzheimer amyloid beta-protein. However, the differential localization of presenilins to early secretory compartments and gamma-secretase substrates to late secretory compartments and the plasma membrane (the "spatial paradox") argues against this view. We investigated this issue by studying the localization of nicastrin, another putative gamma-secretase component, and its association with presenilin-1 into proteolytically active complexes. Glycosidase digests revealed that nicastrin exists in multiple glycoforms and is terminally sialylated, a modification often associated with the trans-Golgi network. Trafficking of nicastrin to the trans-Golgi network was confirmed by density gradient fractionation and immunofluorescence microscopy. In presenilin-deficient cells, however, nicastrin trafficking and maturation were abnormal, as the protein was restricted to early secretory compartments and failed to be sialylated. Mature sialylated nicastrin in trans-Golgi network fractions was complexed quantitatively with N- and C-terminal fragments of presenilin-1, whereas immature nicastrin present in early secretory compartments was not. Additionally, trans-Golgi network fractions contained the gamma-secretase substrate beta-amyloid precursor protein C83 and were enriched in presenilin-dependent gamma-secretase proteolytic activity. The results resolve the apparent spatial paradox by demonstrating that presenilin-nicastrin complexes and presenilin-dependent gamma-secretase activity are co-localized to a late secretory compartment. The findings provide further evidence that presenilin-containing complexes are the gamma-secretase, and indicate that presenilins also regulate gamma-secretase assembly.  相似文献   

9.
Liu Z  Vong QP  Zheng Y 《Developmental cell》2007,12(6):839-840
Microtubule (MT) arrays can be formed either from centrosomes or from noncentrosomal locations. In this issue of Developmental Cell, Efimov and colleagues report a role of CLASPs, the MT plus end-binding proteins, in MT formation from Golgi, implicating Golgi-originated MT arrays in efficient cell migration (Efimov et al., 2007).  相似文献   

10.
Arf GTPases are key regulators of both retrograde and anterograde traffic at the Golgi complex. The Golgi-localized Arf activators, Arf-GEFs (guanine exchange factor) of the BIG/GBF family, are poorly understood in terms of both their regulatory and localization mechanisms. We have performed a detailed kinetic characterization of a functional Golgi Arf-GEF, the trans-Golgi network (TGN)-localized Sec7 protein from yeast. We demonstrate that Sec7 is regulated by both autoinhibition and positive feedback. We show that positive feedback arises through the stable recruitment of Sec7 to membranes via its HDS1 domain by interaction with its product, activated Arf1. This interaction mediates localization of Sec7 to the TGN, because deletion of the HDS1 domain or mutation of the HDS1 domain in combination with deletion of Arf1 significantly increases cytoplasmic localization of Sec7. Our results lead us to propose a model in which Arf-GEF recruitment is linked to Golgi maturation via Arf1 activation.  相似文献   

11.
The trans-Golgi network is a major sorting platform of the secretory pathway from which proteins and lipids, both newly synthesized and retrieved from endocytic compartments, are targeted to different destinations. These sorting processes occur during the formation of pleomorphic tubular-vesicular carriers. The past years have provided insights into basic mechanisms coordinating the spatial and temporal organization of machineries necessary for the segregation of membrane components into distinct microdomains, for the bending, elongation, and fission of corresponding membranes, thus revealing a complex interplay of protein-protein and protein-lipid interactions.  相似文献   

12.
In Saccharomyces cerevisiae, the polysaccharide chitin is deposited at the mother bud junction by an integral membrane enzyme, chitin synthase 3 (Chs3p). The traffic of Chs3p to the cell surface from the trans-Golgi network (TGN) depends on two proteins, Chs5p and Chs6p, which sort selected cargo proteins into secretory vesicles. We have found that Chs5p forms a large higher-order complex of around 1 MDa with Chs6p and three Chs6 paralogs: Bch1p, Bud7p, and Bch2p. The Chs5/6 complex transiently interacts with its cargo, Chs3p, and the presence of Chs3p in the complex is dependent on every subunit. Chs5p and Chs6p have unique and crucial roles in Chs3p transport because either a chs5delta or chs6delta mutant drastically reduces the level of Chs3p bound to the remaining subunits of the complex. Bch1p and Bud7p appear to have a redundant function in Chs3p transport because deletion of both is necessary to displace Chs3p from the complex. The role of Bch2p in Chs3p binding is the least important. Chs5p is essential for structural integrity of the Chs5/6 complex and may act as a scaffold through which the other subunits assemble. Our results suggest a model of protein sorting at the TGN that involves a peripheral, possibly coat, complex that includes multiple related copies of a specificity determining subunit.  相似文献   

13.
Tetsuko Noguchi 《Protoplasma》1994,180(1-2):29-38
Summary The formation and the decomposition of vacuoles in a member of Xanthophyceae,Botryococcus braunii, were examined by light and electron microscopy. Particles around the nucleus were identified as vacuoles from their stainability with neutral red. These particles disappeared during cell division. They reacted positively in an activity test for acid phosphatase. Electron microscopy revealed the presence of spherical vacuoles around the nucleus. During cell division, these vacuoles seemed to be decomposed by the ER which surrounded the vacuoles. Soon after this decomposition, many immature multivesicular bodies (MVBs) appeared to develop from the trans-Golgi network (TGN) and were pinched off from the TGN. These immature MVBs took up small vesicles in them as they grew into the mature MVBs. Mature MVBs took up and digested the surrounding cytoplasm, fused with one another, and eventually became the vacuoles.Abbreviations MVB multivesicular body - TGN trans-Golgi network  相似文献   

14.
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.  相似文献   

15.
Targeting of MHCII-invariant chain complexes from the trans-Golgi network to endosomes is mediated by two di-leucine-based signals present in the cytosolic domain of invariant chain. Generation of this endosomal targeting signal is also dependent on multimerization of the invariant chain cytosolic domain sequences, mediated through assembly of invariant chain into homotrimers. A small subset of invariant chain is modified by the addition of chondroitin sulfate and is expressed on the cell surface in association with MHCII. In the present study, we have followed the biosynthetic pathway and route of intracellular transport of this proteoglycan form of invariant chain. We found that the efficiency of chondroitin sulfate modification can be increased by altering the invariant chain amino acid sequence around Ser-201 to the xylosylation consensus sequence. Our results also indicate that, following sulfation, the proteoglycan form is transported rapidly from the trans-Golgi network to the cell surface and is degraded following internalization into an endocytic compartment. Invariant chain-chondroitin sulfate is present in invariant chain trimers that also include conventional non-proteoglycan forms of invariant chain. These data indicate that invariant chain-chondroitin sulfate-containing complexes are transported rapidly from the trans-Golgi network to the cell surface in spite of the presence of an intact endosomal localization signal. Furthermore, these results suggest that invariant chain-chondroitin sulfate may play an important role in the generation of cell-surface pools of invariant chain that can serve as receptors for CD44 and macrophage migration inhibitory factor.  相似文献   

16.
Cargo proteins moving along the secretory pathway are sorted at the TGN (trans-Golgi network) into distinct carriers for delivery to the plasma membrane or endosomes. Recent studies in yeast and mammals have shown that formation of these carriers is regulated by PtdIns(4)P. This phosphoinositide is abundant at the TGN and acts to recruit components required for carrier formation to the membrane. Other phosphoinositides are also present on the TGN, but the extent to which they regulate trafficking is less clear. Further characterization of phosphoinositide kinases and phosphatases together with identification of new TGN-associated phosphoinositide-binding proteins will reveal the extent to which different phosphoinositides regulate TGN trafficking, and help define the molecular mechanisms involved.  相似文献   

17.
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.  相似文献   

18.
Constitutive secretion is used to deliver newly synthesized proteins to the cell surface and to the extracellular milieu. The trans-Golgi network is a key station along this route that mediates sorting of proteins into distinct transport pathways, aided in part by clathrin and adaptor proteins. Subsequent movement of proteins to the plasma membrane can occur either directly or via the endocytic pathway. Moreover, multiple, parallel pathways from the trans-Golgi network to the plasma membrane appear to exist, not only in complex, polarized cells such as epithelial cells and neurons, but also in relatively simple cells such as fibroblasts. In addition to typical secretory vesicles, these pathways involve both small, pleiomorphic transport containers and relatively large tubular-saccular carriers that travel along cytoskeletal tracks. While production and movement of these membranous structures are typically described as constitutive, recent studies have revealed that these key steps in secretion are tightly regulated by Ras-superfamily GTPases, members of the protein kinase D family and tethering complexes such as the exocyst.  相似文献   

19.
In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.  相似文献   

20.
The mammalian endopeptidase, furin, is predominantly localized to the trans-Golgi network (TGN) at steady state. The localization of furin to this compartment seems to be the result of a dynamic process in which the protein undergoes cycling between the TGN and the plasma membrane. Both TGN localization and internalization from the plasma membrane are mediated by targeting information contained within the cytoplasmic domain of furin. Here, we report the results of a mutagenesis analysis aimed at identifying the source(s) of targeting information within the furin cytoplasmic domain. Our studies show that there are at least two cytoplasmic determinants that contribute to the steady-state localization and trafficking of furin. The first determinant corresponds to a canonical tyrosine-based motif, YKGL (residues 758-761), that functions mainly as an internalization signal. The second determinant consists of a strongly hydrophilic sequence (residues 766-783) that contains a large cluster of acidic residues (E and D) and is devoid of any tyrosine-based or di-leucine-based motifs. This second determinant is capable of conferring localization to the TGN as well as mediating internalization from the plasma membrane. Thus, these observations establish the existence of a novel, autonomous determinant distinct from sorting signals described previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号