首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-immune (na?ve) phage antibody libraries have become an important source of antibodies for reagent, diagnostic, and therapeutic use. To date, reported na?ve libraries have been constructed in phagemid vectors as fusions to pIII, yielding primarily single copy (monovalent) display of antibody fragments. For this work, we subcloned the single chain Fv (scFv) gene repertoire from a na?ve phagemid antibody library into a true phage vector to create a multivalently displayed scFv phage library. Compared to monovalently displayed scFv, multivalent phage display resulted in improved efficiency of display as well as antibody selection. A greater number of antibodies were obtained and at earlier rounds of selection. Such increased efficiency allows the screening for binding antibodies after a single round of selection, greatly facilitating automation. Expression levels of antigen-binding scFv were also higher than from the phagemid library. In contrast, the affinities of scFv from the phage library were lower than from the phagemid library. This could be overcome by utilizing the scFv in a multivalent format, by affinity maturation, or by converting the library to monovalent display after the first round of selection.  相似文献   

2.
In this work, two phage biopanning strategies were developed to identify affinity peptides for a single Fab and multiple kappa Fabs. For the biopanning rounds, protein L beads were employed to bind Fab targets in a fixed orientation, and NHS functionalized magnetic beads were used to facilitate evaluation of low pH elution conditions. The resulting peptide sequences were synthesized and the binding to different Fabs was evaluated using fluorescence polarization. The first biopanning approach yielded a peptide with similar affinities for two forms of the Fab (recombinantly expressed and post papain-digestion) as well as the intact antibody. While moderate affinity was observed toward a murine variant of the Fab with the same complementarity determining regions (CDR) region but different framework, minimal binding occurred to a Fab with high sequence homology but containing different CDR loops. The second biopanning strategy yielded a peptide with affinity for all three kappa Fabs indicating that it may be a good lead for the development of more general affinity reagents for recombinant kappa Fabs. Finally, an affinity peptide column was developed, and its efficacy was demonstrated for Fab purification from a complex cell culture fluid mixture. The results presented in this article demonstrate that different peptide-based phage biopanning strategies can be effectively employed to identify affinity peptide leads for specific Fab and more general kappa Fab purifications.  相似文献   

3.
Phage display technology (PDT), a combinatorial screening approach, provides a molecular diversity tool for creating libraries of peptides/proteins and discovery of new recombinant therapeutics. Expression of proteins such as monoclonal antibodies (mAbs) on the surface of filamentous phage can permit the selection of high affinity and specificity therapeutic mAbs against virtually any target antigen. Using a number of diverse selection platforms (e.g. solid phase, solution phase, whole cell and in vivo biopannings), phage antibody libraries (PALs) from the start point provides great potential for the isolation of functional mAb fragments with diagnostic and/or therapeutic purposes. Given the pivotal role of PDT in the discovery of novel therapeutic/diagnostic mAbs, in the current review, we provide an overview on PALs and discuss their impact in the advancement of engineered mAbs.  相似文献   

4.
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity.

Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies.

Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.  相似文献   


5.
Shen Y  Yang X  Dong N  Xie X  Bai X  Shi Y 《Cell research》2007,17(7):650-660
The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production ofmonoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the κ light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94× 10^7. Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (VH) and variable light domains (VL) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.  相似文献   

6.
A chimeric Fab was expressed in Chinese hamster ovary cells under the control of the CMV promoter in a two-stage production process. Cells were first grown to 90% confluence at 37 degrees C in a proliferation phase, followed by a production phase at either 37 degrees C or 28 degrees C. Medium supplemented with serum and medium free from serum was tested in the production phase at both temperatures. Comparison of Fab expression revealed that reducing the temperature to 28 degrees C resulted in a 14-fold increase in product yield when cells were cultivated in serum-containing medium, and in a 38-fold increase in product yield when serum-free medium was applied.  相似文献   

7.
噬菌体抗体库的优化   总被引:1,自引:0,他引:1  
噬菌体抗体组合文库技术作为噬菌体展示和抗体组合文库两种技术的集成,由于它具有库容量大、特异性高、和敏感性强的优点而被誉为抗体技术的第三次革命。但是由于一些技术上的原因,使得它无法得到广泛的应用,本文就其优化进行综述。  相似文献   

8.
噬菌体抗体库筛选技术   总被引:8,自引:0,他引:8  
魏东芝  赖敏 《生命科学》2000,12(3):134-136,129
噬菌体展示技术(Phage Display Technology)为制备高亲和性抗体提供了有力的工具。噬菌体抗体库的筛选是其中关键的环节,为了提高筛选效率,用包被在固体表面的抗原进行筛选的传统方法不断地被改进,如宿主菌直接洗脱和双层膜筛选系统和抗抗体替代抗原筛选系统。将噬菌体感染宿主菌的过程与筛选过程相关联,产生了选择性感染筛选系统。  相似文献   

9.
10.
Phage-displayed synthetic antibody libraries were built on a single human framework by introducing synthetic diversity at solvent-exposed positions within the heavy chain complementarity-determining regions (CDRs). The design strategy of mimicking natural diversity using tailored codons had been validated previously with scFv libraries, which produced antibodies that bound to antigen, murine vascular endothelial growth factor (mVEGF), with affinities in the 100nM range. To improve library performance, we constructed monovalent and bivalent antigen-binding fragment (Fab) libraries, and explored different CDR-H3 diversities by varying the amino acid composition and CDR length. A Fab with sub-nanomolar affinity for mVEGF was obtained from a library with CDR-H3 diversity designed to contain all 20 naturally occurring amino acids. We then expanded the library by increasing the variability of CDR-H3 length and using tailored codons that mimicked the amino acid composition of natural CDR-H3 sequences. The library was tested against a panel of 13 protein antigens and high-affinity Fabs were obtained for most antigens. Furthermore, the heavy chain of an anti-mVEGF clone was recombined with a library of light chain CDRs, and the affinity was improved from low nanomolar to low picomolar. The results demonstrated that high-affinity human antibodies can be generated from libraries with completely synthetic CDRs displayed on a single scaffold.  相似文献   

11.
A full-size human antibody to Ebola virus was constructed by joining genes encoding the constant domains of the heavy and light chains of human immunoglobulin with the corresponding DNA fragments encoding variable domains of the single-chain antibody 4D1 specific to Ebola virus, which was chosen from a combinatorial phage display library of single-strand human antibodies. Two expression plasmids, pCH1 and pCL1, containing the artificial genes encoding the light and heavy chains of human immunoglobulin, respectively, were constructed. Their cotransfection into the human embryonic kidney cell line HEK293T provided the production of a full-size recombinant human antibody. The affinity constant for the antibody was estimated by solid-phase enzyme-linked immunoassay to be 7.7 × 107 ± 1.5 × 107 M?1. Like the parent single-chain antibody 4D1, the resulting antibody bound the nucleoprotein of Ebola virus and did not interact with the proteins of Marburg virus.  相似文献   

12.
Antiidiotypic antibodies (Ab2) are needed as tools for a better understanding of molecular mimicry and the immunological network, and for many potential applications in the biomedical and pharmaceutical field. Antiidiotypic antibodies mimicking carbohydrate or conformational epitopes (Ab2beta) are of considerable interest as surrogate immunogens for cancer vaccination. However, it has so far been difficult and tedious to produce Ab2s to a given antigen. Here we describe a fast and reliable technique for generating large diversities of antiidiotypic single chain antibody fragments from non-immunized phagemid libraries using phage display. Key elements are a specific elution with the original antigen followed by trypsin treatment of the eluted phages in combination with the protease sensitive helperphage KM13. This novel method was compared with various conventional selection and elution methods, including, specific elution with or without trypsin treatment, elution with glycine at pH 2.2 with or without trypsin treatment, and elution by trypsin treatment only. The results clearly show that specific elution in combination with trypsin treatment of the eluted phages is by far superior to the other conventional methods, enabling for the first time the generation of a large variety of Ab2s after only two to three rounds of selection, thereby maintaining maximum diversity. We obtained 28 to 88 antiidiotypes out of 96 tested clones after two to three rounds of selection with a diversity of 55-90 %. This was achieved for two carbohydrate (di-, and tetrasaccharides) and one conformational protein epitope using two large na?ve libraries and their corresponding monoclonal Ab1. The antiidiotypic nature of the selected scFv-phages was verified by ELISA and immunocytochemistry inhibition experiments.  相似文献   

13.
The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.  相似文献   

14.
One of the limitations of the use of phage antibody libraries in high throughput selections is the production of sufficient phage antibody library at the appropriate quality. Here, we successfully adapt a bioreactor-based protocol for the production of phage peptide libraries to the production of phage antibody libraries. The titers obtained in the stirred-tank bioreactor are 4 to 5 times higher than in a standard shake flask procedure, and the quality of the phage antibody library produced is indistinguishable to that produced using standard procedures as assessed by Western blotting and functional selections. Availability of this protocol will facilitate the use of phage antibody libraries in high-throughput scale selections.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):26-31
One of the limitations of the use of phage antibody libraries in high throughput selections is the production of sufficient phage antibody library at the appropriate quality. Here, we successfully adapt a bioreactor-based protocol for the production of phage peptide libraries to the production of phage antibody libraries. The titers obtained in the stirred-tank bioreactor are 4 to 5 times higher than in a standard shake flask procedure, and the quality of the phage antibody library produced is indistinguishable to that produced using standard procedures as assessed by Western blotting and functional selections. Availability of this protocol will facilitate the use of phage antibody libraries in high-throughput scale selections.  相似文献   

16.
In order to investigate the role of the constant domainson the antigen-binding property of the variable domains, we have carried out a comparative thermodynamic study of the anti-dansyl Fv, Fab* and Fab fragments that possess the identical amino acid sequence of the variable domains. The thermodynamic analyses have shown that binding constants, enthalphy changes and entropy changes are similar for the three antigen-binding fragments, whereas the thermal stability of Fab is much higher than that of Fv and Fab*. We have concluded that (i) the variable domains of the three antigen-binding fragments possess identical intrinsic capability for antigen binding and (ii) the two constant domains serve to improve the stability of the variable domains.  相似文献   

17.
The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.3 × 107 combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a 1.5 × 109 combinatorial antibody complexity, was also generated in a rapid manner by combining 1.3 × 107 heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecule  相似文献   

18.
The current standard treatment for acute myeloid leukemia (AML) is chemotherapy based on cytarabine and daunorubicine (7 + 3), but it discriminates poorly between malignant and benign cells. Dose-limiting off‑target effects and intrinsic drug resistance result in the inefficient eradication of leukemic blast cells and their survival beyond remission. This minimal residual disease is the major cause of relapse and is responsible for a 5-year survival rate of only 24%. More specific and efficient approaches are therefore required to eradicate malignant cells while leaving healthy cells unaffected. In this study, we generated scFv antibodies that bind specifically to the surface of AML blast cells and AML bone marrow biopsy specimens. We isolated the antibodies by phage display, using subtractive whole-cell panning with AML M2‑derived Kasumi‑1 cells. By selecting for internalizing scFv antibody fragments, we focused on potentially novel agents for intracellular drug delivery and tumor modulation. Two independent methods showed that 4 binders were internalized by Kasumi-1 cells. Furthermore, we observed the AML‑selective inhibition of cell proliferation and the induction of apoptosis by a recombinant immunotoxin comprising one scFv fused to a truncated form of Pseudomonas exotoxin A (ETA''). This method may therefore be useful for the selection of novel disease-specific internalizing antibody fragments, providing a novel immunotherapeutic strategy for the treatment of AML patients.  相似文献   

19.
《MABS-AUSTIN》2013,5(2):390-402
The current standard treatment for acute myeloid leukemia (AML) is chemotherapy based on cytarabine and daunorubicine (7 + 3), but it discriminates poorly between malignant and benign cells. Dose-limiting off?target effects and intrinsic drug resistance result in the inefficient eradication of leukemic blast cells and their survival beyond remission. This minimal residual disease is the major cause of relapse and is responsible for a 5-year survival rate of only 24%. More specific and efficient approaches are therefore required to eradicate malignant cells while leaving healthy cells unaffected. In this study, we generated scFv antibodies that bind specifically to the surface of AML blast cells and AML bone marrow biopsy specimens. We isolated the antibodies by phage display, using subtractive whole-cell panning with AML M2?derived Kasumi?1 cells. By selecting for internalizing scFv antibody fragments, we focused on potentially novel agents for intracellular drug delivery and tumor modulation. Two independent methods showed that 4 binders were internalized by Kasumi-1 cells. Furthermore, we observed the AML?selective inhibition of cell proliferation and the induction of apoptosis by a recombinant immunotoxin comprising one scFv fused to a truncated form of Pseudomonas exotoxin A (ETA'). This method may therefore be useful for the selection of novel disease-specific internalizing antibody fragments, providing a novel immunotherapeutic strategy for the treatment of AML patients.  相似文献   

20.
人源抗狂犬病毒单克隆抗体Fab段基因的获得和表达   总被引:2,自引:2,他引:2  
运用噬菌体表面呈现(phage display)技术获得了人源抗狂犬病毒糖蛋白基因工程单克隆抗体Fab段基因及其表达。从狂犬病毒PM株Vero细胞疫苗免疫的人抗凝血中分离获得外周淋巴细胞,提取细胞总RNA,通过RTPCR方法,用一组人IgG Fab基因4特异性引物,从合成的cDNA中扩增了一组轻链和重链Fab段基因,将轻链和重链Fab段基因,将轻链和重链先后克隆入噬菌体载体pComb3,成功地建立了抗狂犬病毒抗原的方法,对此抗体库进行富积筛选表达,成功地获得了抗狂犬病毒的人源单抗Fab段基因及其在大肠杆菌中的有效表达,对其中一株单抗G10进行了较为系统的分析,发现它与一株鼠源中和性狂犬病毒糖蛋白特异性单抗存在竞争,证实该单抗能识别狂犬病毒糖蛋白,其序列资料分析表明,该单抗为一株新的抗狂犬病毒人源基因工程抗体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号